Consistent non-Gaussian pseudo maximum likelihood estimators

被引:8
作者
Fiorentini, Gabriele [1 ,2 ]
Sentana, Enrique [3 ]
机构
[1] Univ Firenze, Viale Morgagni 59, I-50134 Florence, Italy
[2] RCEA, Viale Morgagni 59, I-50134 Florence, Italy
[3] CEMFI, Casado Alisal 5, E-28014 Madrid, Spain
关键词
Consistency; Efficiency; Misspecification; GARCH MODELS; VOLATILITY; EFFICIENCY; INFERENCE; SKEWNESS; KURTOSIS; ARCH;
D O I
10.1016/j.jeconom.2019.05.017
中图分类号
F [经济];
学科分类号
02 ;
摘要
We characterise the mean and variance parameters that distributionally misspecified maximum likelihood estimators can consistently estimate in location-scale models, and provide simple closed-form consistent estimators for the rest. Including means and a multivariate coverage make our procedures useful for GARCH-M models and empirically relevant macro and finance applications involving VARS and multivariate regressions. We study the statistical properties of our proposed consistent estimators, as well as their efficiency relative to Gaussian pseudo maximum likelihood and semiparametric procedures. We provide finite sample results through Monte Carlo simulations. Finally, we discuss two practical applications to individual stock returns and mean variance efficiency/spanning tests. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:321 / 358
页数:38
相关论文
共 50 条
[21]   Asymptotic skewness and the distribution of maximum likelihood estimators [J].
Bowman, KO ;
Shenton, LR .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (11) :2743-2760
[22]   Asymptotic properties of maximum weighted likelihood estimators [J].
Wang, XG ;
van Eeden, C ;
Zidek, JV .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 119 (01) :37-54
[23]   A matrix formula for the skewness of maximum likelihood estimators [J].
Patriota, Alexandre G. ;
Cordeiro, Gauss M. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (04) :529-537
[24]   Improved maximum likelihood estimators for the parameters of the JohnsonSBdistribution [J].
Menezes, Andre Felipe Berdusco ;
Mazucheli, Josmar .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (06) :1511-1526
[25]   Skewness of maximum likelihood estimators in dispersion models [J].
Simas, Alexandre B. ;
Cordeiro, Gauss M. ;
Rocha, Andrea V. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) :2111-2121
[26]   ON LOCATION AND SCALE MAXIMUM-LIKELIHOOD ESTIMATORS [J].
GUPTA, AK ;
SZEKELY, GJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) :585-589
[27]   ON THE CONSISTENCY OF CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATORS [J].
PFANZAGL, J .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1993, 45 (04) :703-719
[28]   Asymptotic properties of maximum likelihood estimators in models with multiple change points [J].
He, Heping ;
Severini, Thomas A. .
BERNOULLI, 2010, 16 (03) :759-779
[29]   Resistant outlier rules and the non-Gaussian case [J].
Carling, K .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 33 (03) :249-258
[30]   Numerical simulation of non-Gaussian wind load [J].
YE JiHong DING JingHu LIU ChuanYan Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of EducationSoutheast UniversityNanjing China .
Science China(Technological Sciences), 2012, (11) :3057-3069