Consistent non-Gaussian pseudo maximum likelihood estimators

被引:8
|
作者
Fiorentini, Gabriele [1 ,2 ]
Sentana, Enrique [3 ]
机构
[1] Univ Firenze, Viale Morgagni 59, I-50134 Florence, Italy
[2] RCEA, Viale Morgagni 59, I-50134 Florence, Italy
[3] CEMFI, Casado Alisal 5, E-28014 Madrid, Spain
关键词
Consistency; Efficiency; Misspecification; GARCH MODELS; VOLATILITY; EFFICIENCY; INFERENCE; SKEWNESS; KURTOSIS; ARCH;
D O I
10.1016/j.jeconom.2019.05.017
中图分类号
F [经济];
学科分类号
02 ;
摘要
We characterise the mean and variance parameters that distributionally misspecified maximum likelihood estimators can consistently estimate in location-scale models, and provide simple closed-form consistent estimators for the rest. Including means and a multivariate coverage make our procedures useful for GARCH-M models and empirically relevant macro and finance applications involving VARS and multivariate regressions. We study the statistical properties of our proposed consistent estimators, as well as their efficiency relative to Gaussian pseudo maximum likelihood and semiparametric procedures. We provide finite sample results through Monte Carlo simulations. Finally, we discuss two practical applications to individual stock returns and mean variance efficiency/spanning tests. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:321 / 358
页数:38
相关论文
共 50 条
  • [1] CONSISTENT NON-GAUSSIAN PSEUDO MAXIMUM LIKELIHOOD ESTIMATORS OF SPATIAL AUTOREGRESSIVE MODELS
    Jin, Fei
    Wang, Yuqin
    ECONOMETRIC THEORY, 2024, 40 (05) : 1120 - 1158
  • [2] Specification tests for non-Gaussian maximum likelihood estimators
    Fiorentini, Gabriele
    Sentana, Enrique
    QUANTITATIVE ECONOMICS, 2021, 12 (03) : 683 - 742
  • [3] Consistent Pseudo-Maximum Likelihood Estimators and Groups of Transformations
    Gourieroux, C.
    Monfort, A.
    Zakoian, J. -M.
    ECONOMETRICA, 2019, 87 (01) : 327 - 345
  • [4] Maximum Likelihood Detection in the Presence of Non-Gaussian Jamming
    Almahorg, Khalid A.
    Gohary, Ramy H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5722 - 5735
  • [5] Local Whittle likelihood estimators and tests for non-Gaussian stationary processes
    Naito T.
    Asai K.
    Amano T.
    Taniguchi M.
    Statistical Inference for Stochastic Processes, 2010, 13 (3) : 163 - 174
  • [6] A maximum likelihood approach for non-Gaussian stochastic volatility models
    Fridman, M
    Harris, L
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (03) : 284 - 291
  • [7] Linear Non-Gaussian Component Analysis Via Maximum Likelihood
    Risk, Benjamin B.
    Matteson, David S.
    Ruppert, David
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (525) : 332 - 343
  • [8] Maximum likelihood time delay estimation in non-Gaussian noise
    Yale Univ, New Haven, United States
    IEEE Trans Signal Process, 10 (2571-2575):
  • [9] EXACT MAXIMUM LIKELIHOOD ESTIMATION FOR NON-GAUSSIAN MOVING AVERAGES
    Hsu, Nan-Jung
    Breidt, F. Jay
    STATISTICA SINICA, 2009, 19 (02) : 545 - 560
  • [10] Maximum likelihood time delay estimation in non-Gaussian noise
    Schultheiss, PM
    Messer, H
    Shor, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (10) : 2571 - 2575