Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers

被引:237
作者
Song, Yaqin [1 ,2 ,4 ]
Todorovic, Dragan M. [3 ,4 ]
Cretin, Bernard [4 ]
Vairac, Pascal [4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp, MOE Key Lab Strength & Vibrat, Xian 710049, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China
[3] Univ Belgrade, Inst Multidisciplinary Res, Belgrade 11030, Serbia
[4] Univ Franche Comte, FEMTO ST, CNRS, ENSMM,UTSM, F-25044 Besancon, France
基金
中国国家自然科学基金;
关键词
Photothermal; Thermoelasticitic wave; Plasma wave; Semiconducting microcantilever; Vibration; WAVES;
D O I
10.1016/j.ijsolstr.2010.03.020
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the theory of coupled plasma, thermal and elastic wave was used to study the vibration of semiconducting microcantilevers during photothermal process. The generalized thermoelastic model was adopted, along with plasma wave model, to obtain the vibration response of semiconducting microcantilevers under periodical laser excitation. The influence of thermal relaxation time on the vibration was investigated. The conventional and generalized thermoelastic theories for the temperature and deflection of microcantilever were compared. The simulation results for the amplitude and phase versus the modulation frequency revealed that near resonance frequency the generalized hyperbolic thermoelastic model was more suitable to describe the vibration characterization of microcantilevers than the conventional thermoelstic model. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1871 / 1875
页数:5
相关论文
共 17 条
[1]  
Chandrasekharaiah D. S., 1986, APPL MECH REV, V39, P355, DOI [DOI 10.1115/1.3143705, 10.1115/1.3143705]
[2]   Dynamic force microscopy at high cantilever resonance frequencies using heterodyne optical beam deflection method [J].
Fukuma, T ;
Kimura, K ;
Kobayashi, K ;
Matsushige, K ;
Yamada, H .
APPLIED PHYSICS LETTERS, 2004, 85 (25) :6287-6289
[3]   Resonating modes of vibrating microcantilevers in liquid [J].
Ghatkesar, Murali Krishna ;
Braun, Thomas ;
Barwich, Viola ;
Ramseyer, Jean-Pierre ;
Gerber, Christoph ;
Hegner, Martin ;
Lang, Hans Peter .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[4]  
Green A. E., 1972, J. Elasticity, V2, P1, DOI [10.1007/BF00045689, DOI 10.1007/BF00045689, DOI 10.1093/QJMAM/25.1.1]
[5]   On the micromechanics of micro-cantilever sensors: Property analysis and eigenstrain modeling [J].
Korsunsky, Alexander M. ;
Cherian, Suman ;
Raiteri, Roberto ;
Berger, Ruediger .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 139 (1-2) :70-77
[6]   A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY [J].
LORD, HW ;
SHULMAN, Y .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1967, 15 (05) :299-&
[7]   REGULATION OF A MICROCANTILEVER RESPONSE BY FORCE FEEDBACK [J].
MERTZ, J ;
MARTI, O ;
MLYNEK, J .
APPLIED PHYSICS LETTERS, 1993, 62 (19) :2344-2346
[8]   Detection of trinitrotoluene via deflagration on a microcantilever [J].
Pinnaduwage, LA ;
Wig, A ;
Hedden, DL ;
Gehl, A ;
Yi, D ;
Thundat, T ;
Lareau, RT .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5871-5875
[9]   Electromechanically driven and sensed parametric resonance in silicon microcantilevers [J].
Requa, MV ;
Turner, KL .
APPLIED PHYSICS LETTERS, 2006, 88 (26)
[10]   Energy propagation of thermal waves [J].
Salazar, Agustin .
EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (06) :1349-1355