Semi-Supervised Classification for PolSAR Data With Multi-Scale Evolving Weighted Graph Convolutional Network

被引:28
|
作者
Ren, Shijie [1 ]
Zhou, Feng [1 ]
机构
[1] Xidian Univ, Key Lab Elect Informat Counter Measure & Simulat, Minist Educ, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Graph convolutional network (GCN); kernel diffusion; multiscale; polarimetric synthetic aperture radar (PolSAR); self-attention; weighted graph; SAR IMAGE CLASSIFICATION; UNSUPERVISED CLASSIFICATION; SEGMENTATION ALGORITHM; SCATTERING MODEL; NEURAL-NETWORK; DECOMPOSITION; FIELD;
D O I
10.1109/JSTARS.2021.3061418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although deep learning-based methods have been successfully applied to polarimetric synthetic aperture radar (PolSAR) image classification tasks, most of the available techniques are not suitable to deal with PolSAR data on irregular domains, e.g., superpixel graphs, because they are naturally designed as grid-based architectures in Euclidean space. To overcome this limitation and achieve robust PolSAR image classification, this article proposes the multiscale evolving weighted graph convolutional network, where weighted graphs based on superpixel technique and Wishart-derived distance are constructed to enable efficient handling of graphical PolSAR data representations. In this article, we derive a new architectural design named graph evolving module that combines pairwise latent feature similarity and kernel diffusion to refine the graph structure in each scale. Finally, we propose a graph integration module based on self-attention to perform robust hierarchical feature extraction and learn an optimal linear combination of various scales to exploit effective feature propagation on multiple graphs. We validate the superiority of proposed approach on classification performance with four real-measured datasets and demonstrate significant improvements compared to state-of-the-art methods. Additionally, the proposed method has shown strong generalization capacity across datasets with similar land covers.
引用
收藏
页码:2911 / 2927
页数:17
相关论文
共 50 条
  • [41] MULTI-SCALE 3D DEEP CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Mingyi
    Li, Bo
    Chen, Huahui
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3904 - 3908
  • [42] Multi-scale fully convolutional network for gland segmentation using three-class classification
    Ding, Huijun
    Pan, Zhanpeng
    Cen, Qian
    Li, Yang
    Chen, Shifeng
    NEUROCOMPUTING, 2020, 380 (380) : 150 - 161
  • [43] Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms
    Niu, Jing
    Li, Hua
    Zhang, Chen
    Li, Dengao
    MEDICAL PHYSICS, 2021, 48 (07) : 3878 - 3892
  • [44] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238
  • [45] Semi-supervised Image Classification via Attention Mechanism and Generative Adversarial Network
    Xiang, Xuezhi
    Yu, Zeting
    Lv, Ning
    Kong, Xiangdong
    Saddik, Abdulmotaleb Ei
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [46] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xiang, Xuezhi
    Yu, Zeting
    Lv, Ning
    Kong, Xiangdong
    El Saddik, Abdulmotaleb
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1527 - 1540
  • [47] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xuezhi Xiang
    Zeting Yu
    Ning Lv
    Xiangdong Kong
    Abdulmotaleb El Saddik
    Neural Processing Letters, 2020, 51 : 1527 - 1540
  • [48] Multi-scale Hochschild spectral analysis on graph data
    He, Yunan
    Liu, Jian
    AIMS MATHEMATICS, 2025, 10 (01): : 1384 - 1406
  • [49] Multiscale Superpixel-Guided Weighted Graph Convolutional Network for Polarimetric SAR Image Classification
    Wang, Ru
    Nie, Yinju
    Geng, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3727 - 3741
  • [50] Skeleton-Based Action Recognition Using Multi-Scale and Multi-Stream Improved Graph Convolutional Network
    Li, Wang
    Liu, Xu
    Liu, Zheng
    Du, Feixiang
    Zou, Qiang
    IEEE ACCESS, 2020, 8 (08): : 144529 - 144542