Semi-Supervised Classification for PolSAR Data With Multi-Scale Evolving Weighted Graph Convolutional Network

被引:28
|
作者
Ren, Shijie [1 ]
Zhou, Feng [1 ]
机构
[1] Xidian Univ, Key Lab Elect Informat Counter Measure & Simulat, Minist Educ, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Graph convolutional network (GCN); kernel diffusion; multiscale; polarimetric synthetic aperture radar (PolSAR); self-attention; weighted graph; SAR IMAGE CLASSIFICATION; UNSUPERVISED CLASSIFICATION; SEGMENTATION ALGORITHM; SCATTERING MODEL; NEURAL-NETWORK; DECOMPOSITION; FIELD;
D O I
10.1109/JSTARS.2021.3061418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although deep learning-based methods have been successfully applied to polarimetric synthetic aperture radar (PolSAR) image classification tasks, most of the available techniques are not suitable to deal with PolSAR data on irregular domains, e.g., superpixel graphs, because they are naturally designed as grid-based architectures in Euclidean space. To overcome this limitation and achieve robust PolSAR image classification, this article proposes the multiscale evolving weighted graph convolutional network, where weighted graphs based on superpixel technique and Wishart-derived distance are constructed to enable efficient handling of graphical PolSAR data representations. In this article, we derive a new architectural design named graph evolving module that combines pairwise latent feature similarity and kernel diffusion to refine the graph structure in each scale. Finally, we propose a graph integration module based on self-attention to perform robust hierarchical feature extraction and learn an optimal linear combination of various scales to exploit effective feature propagation on multiple graphs. We validate the superiority of proposed approach on classification performance with four real-measured datasets and demonstrate significant improvements compared to state-of-the-art methods. Additionally, the proposed method has shown strong generalization capacity across datasets with similar land covers.
引用
收藏
页码:2911 / 2927
页数:17
相关论文
共 50 条
  • [1] SEMI-SUPERVISED CLASSIFICATION OF POLSAR DATA WITH MULTI-SCALE WEIGHTED GRAPH CONVOLUTIONAL NETWORK
    Ren, Shijie
    Zhou, Feng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1715 - 1718
  • [2] FULLY CONVOLUTIONAL SEMI-SUPERVISED GAN FOR POLSAR CLASSIFICATION
    Liu, Mengchen
    Hu, Yue
    Wang, Shuang
    Guo, Yanhe
    Hou, Biao
    Jiao, Licheng
    Hou, Xiaojin
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 621 - 624
  • [3] Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints
    Zhang, Haiqi
    Lu, Guangquan
    Zhan, Mengmeng
    Zhang, Beixian
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2645 - 2656
  • [4] POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK
    Zhang, Lamei
    Zhang, Siyu
    Dong, Hongwei
    Lu, Da
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 200 - 203
  • [5] Semi-Supervised Node Classification With Discriminable Squeeze Excitation Graph Convolutional Networks
    Jia, Nan
    Tian, Xiaolin
    Zhang, Yang
    Wang, Fengge
    IEEE ACCESS, 2020, 8 (08): : 148226 - 148236
  • [6] Semi-Supervised PolSAR Image Classification Based on Self-Training and Superpixels
    Li, Yangyang
    Xing, Ruoting
    Jiao, Licheng
    Chen, Yanqiao
    Chai, Yingte
    Marturi, Naresh
    Shang, Ronghua
    REMOTE SENSING, 2019, 11 (16)
  • [7] Adaptive Graph Convolutional Network for PolSAR Image Classification
    Liu, Fang
    Wang, Jingya
    Tang, Xu
    Liu, Jia
    Zhang, Xiangrong
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] PolSAR image classification based on multi-scale stacked sparse autoencoder
    Zhang, Lu
    Jiao, Licheng
    Ma, Wenping
    Duan, Yiping
    Zhang, Dan
    NEUROCOMPUTING, 2019, 351 : 167 - 179
  • [9] Community Detection using Semi-supervised Learning with Graph Convolutional Network on GPUs
    Sattar, Naw Safrin
    Arifuzzaman, Shaikh
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5237 - 5246
  • [10] A multi-scale convolutional neural network for heartbeat classification
    Zheng, Lesong
    Zhang, Miao
    Qiu, Lishen
    Ma, Gang
    Zhu, Wenliang
    Wang, Lirong
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1488 - 1492