AVERAGED TIME-OPTIMAL CONTROL PROBLEM IN THE SPACE OF POSITIVE BOREL MEASURES

被引:7
作者
Cavagnari, Giulia [1 ]
Marigonda, Antonio [2 ]
Piccoli, Benedetto [1 ]
机构
[1] Rutgers Univ Camden, Dept Math Sci, 311 N 5th St, Camden, NJ 08102 USA
[2] Univ Verona, Dept Comp Sci, Str Le Grazie 15, I-37134 Verona, Italy
关键词
Time-optimal control; dynamic programming; optimal transport; differential inclusions; multi-agent systems;
D O I
10.1051/cocv/2017060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a time-optimal control theory in the space M+ (R-d) of positive and finite Borel measures. We prove some natural results, such as a dynamic programming principle, the existence of optimal trajectories, regularity results and an HJB equation for the value function in this infinite dimensional setting. The main tool used is the superposition principle (by Ambrosio-Gigli-Savare) which allows to represent the trajectory in the space of measures as weighted superposition of classical characteristic curves in Rd.
引用
收藏
页码:721 / 740
页数:20
相关论文
共 50 条
  • [41] Time-optimal swing-up feedback control of a pendulum
    F. L. Chernousko
    S. A. Reshmin
    Nonlinear Dynamics, 2007, 47 : 65 - 73
  • [42] Fractional Order Systems Time-Optimal Control and Its Application
    Yiheng Wei
    Bin Du
    Songsong Cheng
    Yong Wang
    Journal of Optimization Theory and Applications, 2017, 174 : 122 - 138
  • [43] Time-optimal velocity tracking control for differential drive robots
    Poonawala, Hasan A.
    Spong, Mark W.
    AUTOMATICA, 2017, 85 : 153 - 157
  • [44] Time-optimal control of servo systems using PD algorithms
    Wu, ST
    Fu, JY
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 1998, 41 (03): : 384 - 390
  • [45] The Load Torque Influence on Time-Optimal Position Control Process
    Andrzejewski, Andrzej
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (01): : 142 - 145
  • [46] Time-optimal swing-up feedback control of a pendulum
    Chernousko, F. L.
    Reshmin, S. A.
    NONLINEAR DYNAMICS, 2007, 47 (1-3) : 65 - 73
  • [47] Fractional Order Systems Time-Optimal Control and Its Application
    Wei, Yiheng
    Du, Bin
    Cheng, Songsong
    Wang, Yong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) : 122 - 138
  • [48] Time-optimal guidance control for an agricultural robot with orientation constraints
    Dong, Fuhong
    Petzold, Olaf
    Heinemann, Wolfgang
    Kasper, Roland
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2013, 99 : 124 - 131
  • [49] TIME-OPTIMAL CONTROL OF FRACTIONAL-ORDER LINEAR SYSTEMS
    Matychyn, Ivan
    Onyshchenko, Viktoriia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 687 - 696
  • [50] APPLICATION OF ITERATIVE DYNAMIC-PROGRAMMING TO TIME-OPTIMAL CONTROL
    BOJKOV, B
    LUUS, R
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1994, 72 (A1) : 72 - 80