AVERAGED TIME-OPTIMAL CONTROL PROBLEM IN THE SPACE OF POSITIVE BOREL MEASURES

被引:7
|
作者
Cavagnari, Giulia [1 ]
Marigonda, Antonio [2 ]
Piccoli, Benedetto [1 ]
机构
[1] Rutgers Univ Camden, Dept Math Sci, 311 N 5th St, Camden, NJ 08102 USA
[2] Univ Verona, Dept Comp Sci, Str Le Grazie 15, I-37134 Verona, Italy
关键词
Time-optimal control; dynamic programming; optimal transport; differential inclusions; multi-agent systems;
D O I
10.1051/cocv/2017060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a time-optimal control theory in the space M+ (R-d) of positive and finite Borel measures. We prove some natural results, such as a dynamic programming principle, the existence of optimal trajectories, regularity results and an HJB equation for the value function in this infinite dimensional setting. The main tool used is the superposition principle (by Ambrosio-Gigli-Savare) which allows to represent the trajectory in the space of measures as weighted superposition of classical characteristic curves in Rd.
引用
收藏
页码:721 / 740
页数:20
相关论文
共 50 条
  • [21] Time-optimal control via fuzzy approach
    Lin, PT
    Su, SF
    Lee, TT
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 3817 - 3821
  • [22] Computational Method for Time-Optimal Switching Control
    C.Y. Kaya
    J.L. Noakes
    Journal of Optimization Theory and Applications, 2003, 117 : 69 - 92
  • [23] THE BELLMAN EQUATION FOR TIME-OPTIMAL CONTROL OF NONCONTROLLABLE, NONLINEAR-SYSTEMS
    BARDI, M
    STAICU, V
    ACTA APPLICANDAE MATHEMATICAE, 1993, 31 (03) : 201 - 223
  • [24] Admissible Controls in a Nonlinear Time-Optimal Problem with Phase Constraints
    Kandoba, I. N.
    Koz'min, I., V
    Novikov, D. A.
    IFAC PAPERSONLINE, 2018, 51 (32): : 251 - 255
  • [25] A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC TIME-OPTIMAL CONTROL PROBLEMS
    Bonifacius, Lucas
    Pieper, Konstantin
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 129 - 162
  • [26] Time-optimal control of flexible systems subject to friction
    Kim, Jae-Jun
    Kased, Rajaey
    Singh, Tarunraj
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2008, 29 (04) : 257 - 277
  • [27] Time-optimal fuzzy control based on computation method
    Lin, PT
    Lee, TT
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 600 - 605
  • [28] Time-optimal flatness based control of a gantry crane
    Kolar, Bernd
    Rams, Hubert
    Schlacher, Kurt
    CONTROL ENGINEERING PRACTICE, 2017, 60 : 18 - 27
  • [29] Robust time-optimal control of constrained linear systems
    Mayne, DQ
    Schroeder, WR
    AUTOMATICA, 1997, 33 (12) : 2103 - 2118
  • [30] Input shaping and time-optimal control of flexible structures
    Lau, MA
    Pao, LY
    AUTOMATICA, 2003, 39 (05) : 893 - 900