AVERAGED TIME-OPTIMAL CONTROL PROBLEM IN THE SPACE OF POSITIVE BOREL MEASURES

被引:7
|
作者
Cavagnari, Giulia [1 ]
Marigonda, Antonio [2 ]
Piccoli, Benedetto [1 ]
机构
[1] Rutgers Univ Camden, Dept Math Sci, 311 N 5th St, Camden, NJ 08102 USA
[2] Univ Verona, Dept Comp Sci, Str Le Grazie 15, I-37134 Verona, Italy
关键词
Time-optimal control; dynamic programming; optimal transport; differential inclusions; multi-agent systems;
D O I
10.1051/cocv/2017060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a time-optimal control theory in the space M+ (R-d) of positive and finite Borel measures. We prove some natural results, such as a dynamic programming principle, the existence of optimal trajectories, regularity results and an HJB equation for the value function in this infinite dimensional setting. The main tool used is the superposition principle (by Ambrosio-Gigli-Savare) which allows to represent the trajectory in the space of measures as weighted superposition of classical characteristic curves in Rd.
引用
收藏
页码:721 / 740
页数:20
相关论文
共 50 条
  • [1] Time-Optimal Control Problem in the Space of Probability Measures
    Cavagnari, Giulia
    Marigonda, Antonio
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 109 - 116
  • [2] REGULARITY RESULTS FOR A TIME-OPTIMAL CONTROL PROBLEM IN THE SPACE OF PROBABILITY MEASURES
    Cavagnari, Giulia
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (02) : 213 - 233
  • [3] A New Approach to a Fuzzy Time-Optimal Control Problem
    Amrahov, S. Emrah
    Gasilov, N. A.
    Fatullayev, A. G.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 99 (05): : 351 - 369
  • [4] The Time-Optimal Control Problem of a Kind of Petrowsky System
    Luo, Dongsheng
    Wei, Wei
    Deng, Hongyong
    Liao, Yumei
    MATHEMATICS, 2019, 7 (04):
  • [5] 'Transportation' problem of time-optimal heating
    Pleshivtseva, Yulia
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2007, 29 (1-4) : 137 - 148
  • [6] Time-optimal control of articulated mechanisms
    Galicki, M
    Witte, H
    ROBOT CONTROL 1997, VOLS 1 AND 2, 1998, : 283 - 287
  • [7] Time-optimal control for underwater vehicles
    Chyba, M
    Leonard, NE
    Sontag, ED
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL, 2000, : 117 - 122
  • [8] Numerical investigation of a nonlinear time-optimal problem
    Kandoba, I. N.
    Koz'min, I., V
    Novikov, D. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (04): : 429 - 444
  • [9] Time-optimal control with finite bandwidth
    M. Hirose
    P. Cappellaro
    Quantum Information Processing, 2018, 17
  • [10] Time-optimal control with finite bandwidth
    Hirose, M.
    Cappellaro, P.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (04)