GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

被引:0
作者
Gordji, M. Eshaghi [1 ]
Khodaei, H. [1 ]
Khodabakhsh, R. [1 ]
机构
[1] Semnan Univ, Dept Math, Semnan, Iran
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2010年 / 72卷 / 03期
关键词
Quartic; cubic and quadratic functions; Non-Archimedean spaces; p-adic field; Stability; ULAM-RASSIAS STABILITY; BANACH-SPACES; MAPPINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to find the general solution of a mixed type quartic, cubic and quadratic functional equation f(x + ky) + f (x - ky) = k(2)f(x + y) + k(2)f(x - y) + 2(1 - k(2))f(x) + k(2)(k(2) - 1)/6(f(2y) + 2f(-y) - 6f(y)) (k is an element of Z - {0, +/- 1}) in the class of functions between real vector spaces and to obtain the generalized Hyers-Ulam stability problem for the equation in non-Archimedean spaces.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 23 条
[1]  
Aczl J., 1989, Functional Equations in Several Variables (No. 31)
[2]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[3]  
[Anonymous], 2002, FUNCTIONAL EQUATIONS
[4]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[5]  
Bercu G, 2009, BALK J GEOM APPL, V14, P13
[6]  
Chung Jukang K., 2003, [Bulletin of the KMS, 대한수학회보], V40, P565
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]   Stability of Cubic and Quartic Functional Equations in Non-Archimedean Spaces [J].
Gordji, M. Eshaghi ;
Savadkouhi, M. B. .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) :1321-1329
[9]   Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces [J].
Gordji, M. Eshaghi ;
Khodaei, H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5629-5643
[10]  
Hensel K., 1897, JAHRESBER DTSCH MATH, V6, P83