Fractional Laplace Operator and Meijer G-function

被引:50
作者
Dyda, Bartlomiej [1 ]
Kuznetsov, Alexey [2 ]
Kwasnicki, Mateusz [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Ul Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fractional Laplace operator; Riesz potential; Meijer G-function; Hypergeometric function; Jacobi polynomial; Harmonic polynomial; Radial function; BARENBLATT PROFILES;
D O I
10.1007/s00365-016-9336-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of |x|(2), or generalized hypergeometric functions of -|x|(2), multiplied by a solid harmonic polynomial, into the same class of functions. As one important application of this result, we produce a complete system of eigenfunctions of the operator (1 - |x|(2))(+)(alpha/2)(-Delta)(alpha/2) with the Dirichlet boundary conditions outside of the unit ball. The latter result will be used to estimate the eigenvalues of the fractional Laplace operator in the unit ball in a companion paper (Dyda et al., Eigenvalues of the fractional Laplace operator in the unit ball, 2015, arXiv:1509.08533).
引用
收藏
页码:427 / 448
页数:22
相关论文
共 26 条
[11]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[12]   Fractional calculus for power functions and eigenvalues of the fractional Laplacian [J].
Dyda, Bartlomiej .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) :536-555
[13]  
Getoor RK, 1961, Trans. Amer. Math. Soc., V101, P75
[14]  
Gibson P. C., 2015, ARXIV150305402
[15]   On the numerical solution of the eigenvalue problem in fractional quantum mechanics [J].
Guerrero, Alejandro ;
Moreles, Miguel Angel .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (02) :604-613
[16]  
Hmissi F., 1994, Exposition. Math., V12, P281
[17]   Explicit Barenblatt profiles for fractional porous medium equations [J].
Huang, Yanghong .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :857-869
[18]  
KWASNICKI M, 2015, FRACT CALC APPL ANAL, V20, P2017
[19]  
Landkof N. S., 1972, FOUNDATIONS OF MODER
[20]  
Mathai A.M., 1973, LECT NOTES MATH, V348