The effect of Mg3As2 alloying on the thermoelectric properties of n-type Mg3(Sb, Bi)2

被引:12
作者
Imasato, Kazuki [1 ,2 ]
Anand, Shashwat [1 ,3 ]
Gurunathan, Ramya [1 ]
Snyder, G. Jeffrey [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr, Tsukuba, Ibaraki 3058569, Japan
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; TRANSPORT;
D O I
10.1039/d1dt01600h
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Mg3Sb2-Mg3Bi2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi-2(Te,Se)(3) thermoelectric alloys. Using Mg3As2 alloying, we examine another dimension of exploration in Mg3Sb2-Mg3Bi2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg3As2 is different from Mg3Sb2 and Mg3Bi2, at least 15% arsenic solubility on the anion site (Mg-3((Sb0.5Bi0.5)(1-x)As-x)(2): x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg3Sb2-Mg3Bi2 with Mg3As2. Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6-1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg3Sb2-Mg3Bi2 system.
引用
收藏
页码:9376 / 9382
页数:7
相关论文
共 56 条
  • [1] Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature
    Agne, Matthias T.
    Imasato, Kazuki
    Anand, Shashwat
    Lee, Kathleen
    Bux, Sabah K.
    Zevalkink, Alex
    Rettie, Alexander J. E.
    Chung, Duck Young
    Kanatzidis, Mercouri G.
    Snyder, G. Jeffrey
    [J]. MATERIALS TODAY PHYSICS, 2018, 6 : 83 - 88
  • [2] Measuring thermoelectric transport properties of materials
    Borup, Kasper A.
    de Boor, Johannes
    Wang, Heng
    Drymiotis, Fivos
    Gascoin, Franck
    Shi, Xun
    Chen, Lidong
    Fedorov, Mikhail I.
    Mueller, Eckhard
    Iversena, Bo B.
    Snyder, G. Jeffrey
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (02) : 423 - 435
  • [3] Measurement of the electrical resistivity and Hall coefficient at high temperatures
    Borup, Kasper A.
    Toberer, Eric S.
    Zoltan, Leslie D.
    Nakatsukasa, George
    Errico, Michael
    Fleurial, Jean-Pierre
    Iversen, Bo B.
    Snyder, G. Jeffrey
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12)
  • [4] Clark J. B., 1985, B ALLOY PHASE DIAGR, V6, P528
  • [5] Effect of ripple shape and taper on frequency response of reflectivity and transmission in a coaxial Bragg structure
    Ding, Xue-Yong
    Zhang, Shi-Chang
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (08)
  • [6] Alloy scattering of phonons
    Gurunathan, Ramya
    Hanus, Riley
    Snyder, G. Jeffrey
    [J]. MATERIALS HORIZONS, 2020, 7 (06) : 1452 - 1456
  • [7] Han ZJ, 2020, RESEARCH WASH D C
  • [8] Electronic structures of Mg3Pn2 (Pn=N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method
    Imai, Y
    Watanabe, A
    [J]. JOURNAL OF MATERIALS SCIENCE, 2006, 41 (08) : 2435 - 2441
  • [9] Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery
    Imasato, Kazuki
    Kang, Stephen Dongmin
    Snyder, G. Jeffrey
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) : 965 - 971
  • [10] Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5
    Imasato, Kazuki
    Wood, Max
    Kuo, Jimmy Jiahong
    Snyder, G. Jeffrey
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (41) : 19941 - 19946