How much gallium do we need for a p-type Cu(In,Ga)Se2?

被引:3
作者
Ramirez, Omar [1 ]
Lanzoni, Evandro Martin [1 ]
Poeira, Ricardo G. [1 ]
Weiss, Thomas P. [1 ]
Leturcq, Renaud [2 ]
Redinger, Alex [1 ]
Siebentritt, Susanne [1 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, 41 rue Brill, L-4422 Belvaux, Luxembourg
[2] Luxembourg Inst Sci & Technol, Mat Res & Technol Dept, 41 rue Brill, L-4422 Belvaux, Luxembourg
关键词
N-TYPE; ELECTRICAL-PROPERTIES; POINT-DEFECTS; CUINSE2; TRANSPORT; ORIGIN;
D O I
10.1063/5.0091676
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Doping in the chalcopyrite Cu(In,Ga)Se-2 is determined by intrinsic point defects. In the ternary CuInSe2, both N-type conductivity and P-type conductivity can be obtained depending on the growth conditions and stoichiometry: N-type is obtained when grown Cu-poor, Se-poor, and alkali-free. CuGaSe2, on the other hand, is found to be always a P-type semiconductor that seems to resist all kinds of N-type doping, no matter whether it comes from native defects or extrinsic impurities. In this work, we study the N-to-P transition in Cu-poor Cu(In,Ga)Se-2 single crystals in dependence of the gallium content. Our results show that Cu(In,Ga)Se-2 can still be grown as an N-type semiconductor until the gallium content reaches the critical concentration of 15%-19%, where the N-to-P transition occurs. Furthermore, trends in the Seebeck coefficient and activation energies extracted from temperature-dependent conductivity measurements demonstrate that the carrier concentration drops by around two orders of magnitude near the transition concentration. Our proposed model explains the N-to-P transition based on the differences in formation energies of donor and acceptor defects caused by the addition of gallium. (C) 2022 Author(s).
引用
收藏
页数:7
相关论文
共 41 条
  • [1] Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys
    Alonso, MI
    Garriga, M
    Rincón, CAD
    Hernández, E
    León, M
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (05): : 659 - 664
  • [2] The hunt for the third acceptor in CuInSe2 and Cu(In,Ga)Se2 absorber layers
    Babbe, Finn
    Elanzeery, Hossam
    Wolter, Max H.
    Santhosh, Korra
    Siebentritt, Susanne
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (42)
  • [3] Baer D.R., 2002, J SURFACE ANAL, V9, P396, DOI DOI 10.1384/JSA.9.396
  • [4] XPS guide: Charge neutralization and binding energy referencing for insulating samples
    Baer, Donald R.
    Artyushkova, Kateryna
    Cohen, Hagai
    Easton, Christopher D.
    Engelhard, Mark
    Gengenbach, Thomas R.
    Greczynski, Grzegorz
    Mack, Paul
    Morgan, David J.
    Roberts, Adam
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (03):
  • [5] Native point defects in Culn1-xGaxSe2: hybrid density functional calculations predict the origin of p- and n-type conductivity
    Bekaert, J.
    Saniz, R.
    Partoens, B.
    Lamoen, D.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (40) : 22299 - 22308
  • [6] PREPARATION AND SOME PROPERTIES OF CUINSE2 SINGLE-CRYSTALS
    ENDO, S
    IRIE, T
    NAKANISHI, H
    [J]. SOLAR CELLS, 1986, 16 (1-4): : 1 - 15
  • [7] Acceptor activation energies in epitaxial CuGaSe2 grown by MOVPE
    Gerhard, A
    Harneit, W
    Brehme, S
    Bauknecht, A
    Fiedeler, U
    Lux-Steiner, MC
    Siebentritt, S
    [J]. THIN SOLID FILMS, 2001, 387 (1-2) : 67 - 70
  • [8] Gray J. L., 1994, ECE TECHNICAL REPORT, P173
  • [9] Possibility of Doping CuGaSe2 n-Type by Hydrogen
    Han, Miaomiao
    Deak, Peter
    Zeng, Zhi
    Frauenheim, Thomas
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (04)
  • [10] THEORY OF THE THERMOELECTRIC POWER OF SEMICONDUCTORS
    HERRING, C
    [J]. PHYSICAL REVIEW, 1954, 96 (05): : 1163 - 1187