Modeling of wave propagation in thin graphene sheets with WLP-FDTD method

被引:5
作者
Chen, Wei-Jun [1 ]
Shao, Wei [2 ]
Quan, Jun [3 ]
Long, Shi-Yu [1 ]
机构
[1] Lingnan Normal Univ China, Sch Informat Sci & Technol, Zhanjiang, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Appl Phys, Chengdu 610054, Peoples R China
[3] Lingnan Normal Univ China, Sch Phys Sci & Technol, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Auxiliary differential equation (ADE); finite-difference time-domain (FDTD); grapheme; weighted Laguerre polynomials (WLPs); DEVICES;
D O I
10.1080/09205071.2016.1150210
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an efficient finite-difference time-domain (FDTD) method with weighted Laguerre polynomials is proposed to model electromagnetic wave propagation in thin graphene sheets accurately. The proposed method incorporates the intraband terms of the surface conductivity of graphene and introduces an auxiliary differential equation technique to establish the relationship between the electric field intensity and conduct electric current in graphene. Two numerical examples with wave propagation in thin graphene sheet are calculated. Compared with the FDTD method, the results from the proposed method show its accuracy and efficiency.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 16 条
  • [1] Efficient Modeling and Simulation of Graphene Devices With the LOD-FDTD Method
    Ahmed, Iftikhar
    Khoo, Eng Huat
    Li, Erping
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (06) : 306 - 308
  • [2] A Loss-Controllable Absorbing Boundary Condition for Surface Plasmon Polaritons Propagating Onto Graphene
    Amanatiadis, Stamatios A.
    Kantartzis, Nikolaos V.
    Tsiboukis, Theodoros D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [3] Consistent Study of Graphene Structures Through the Direct Incorporation of Surface Conductivity
    Bouzianas, Georgios D.
    Kantartzis, Nikolaos V.
    Yioultsis, Traianos V.
    Tsiboukis, Theodoros D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 161 - 164
  • [4] Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes
    Bouzianas, Georgios D.
    Kantartzis, Nikolaos V.
    Antonopoulos, Christos S.
    Tsiboukis, Theodoros D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 379 - 382
  • [5] Numerical Dispersion Analysis and Key Parameter Selection in Laguerre-FDTD Method
    Chen, Wei-Jun
    Shao, Wei
    Li, Jia-Lin
    Wang, Bing-Zhong
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (12) : 629 - 631
  • [6] An unconditionally stable scheme for the finite-difference time-domain method
    Chung, YS
    Sarkar, TK
    Jung, BH
    Salazar-Palma, M
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) : 697 - 704
  • [7] FDTD Formulation for Graphene Modeling Based on Piecewise Linear Recursive Convolution and Thin Material Sheets Techniques
    de Oliveira, Rodrigo M. S.
    Rodrigues, Nilton R. N. M.
    Dmitriev, Victor
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 767 - 770
  • [8] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [9] Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene
    Hanson, George W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
  • [10] FDTD Modeling of Graphene Devices Using Complex Conjugate Dispersion Material Model
    Lin, Hai
    Pantoja, Mario F.
    Angulo, Luis D.
    Alvarez, Jesus
    Martin, Rafael G.
    Garcia, Salvador G.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (12) : 612 - 614