TEAM: efficient two-locus epistasis tests in human genome-wide association study

被引:129
|
作者
Zhang, Xiang [1 ]
Huang, Shunping [1 ]
Zou, Fei [2 ]
Wang, Wei [1 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btq186
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As a promising tool for identifying genetic markers underlying phenotypic differences, genome-wide association study (GWAS) has been extensively investigated in recent years. In GWAS, detecting epistasis (or gene-gene interaction) is preferable over single locus study since many diseases are known to be complex traits. A brute force search is infeasible for epistasis detection in the genomewide scale because of the intensive computational burden. Existing epistasis detection algorithms are designed for dataset consisting of homozygous markers and small sample size. In human study, however, the genotype may be heterozygous, and number of individuals can be up to thousands. Thus, existing methods are not readily applicable to human datasets. In this article, we propose an efficient algorithm, TEAM, which significantly speeds up epistasis detection for human GWAS. Our algorithm is exhaustive, i.e. it does not ignore any epistatic interaction. Utilizing the minimum spanning tree structure, the algorithm incrementally updates the contingency tables for epistatic tests without scanning all individuals. Our algorithm has broader applicability and is more efficient than existing methods for large sample study. It supports any statistical test that is based on contingency tables, and enables both family-wise error rate and false discovery rate controlling. Extensive experiments show that our algorithm only needs to examine a small portion of the individuals to update the contingency tables, and it achieves at least an order of magnitude speed up over the brute force approach.
引用
收藏
页码:i217 / i227
页数:11
相关论文
共 50 条
  • [31] A Simple and Fast Two-Locus Quality Control Test to Detect False Positives Due to Batch Effects in Genome-Wide Association Studies
    Lee, Sang Hong
    Nyholt, Dale R.
    Macgregor, Stuart
    Henders, Anjali K.
    Zondervan, Krina T.
    Montgomery, Grant W.
    Visscher, Peter M.
    GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 854 - 862
  • [32] Computationally Efficient Relief-based Algorithms for Detecting Epistasis in Genome-wide Association Studies
    Greene, Casey S.
    Kiralis, Jeff
    Moore, Jason H.
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 768 - 768
  • [33] A Genome-Wide Association Study Reveals Association of the Transferrin Receptor Locus with Gout
    Merriman, Tony R.
    Cadzow, Murray
    Tanner, Callum
    Brown, Matthew A.
    Cremin, Katie
    Janssen, Matthijs
    Jansen, Tim
    Joosten, Leo A.
    Radstake, Timothy
    Riches, Philip L.
    Tausche, Anne-Kathrin
    Liote, Frederic
    So, Alex
    van Rij, Andre M.
    Jones, Gregory T.
    Stamp, Lisa K.
    Dalbeth, Nicola
    McKinney, Cushla
    ARTHRITIS & RHEUMATOLOGY, 2015, 67
  • [34] CChi: an Efficient Cloud Epistasis Test Model in Human Genome Wide Association Studies
    Zhou, Zhihui
    Liu, Guixia
    Su, Lingtao
    Yan, Lun
    Han, Liang
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 787 - 791
  • [35] Genome-wide association study identifies a novel locus for cannabis dependence
    A Agrawal
    Y-L Chou
    C E Carey
    D A A Baranger
    B Zhang
    R Sherva
    L Wetherill
    M Kapoor
    J-C Wang
    S Bertelsen
    A P Anokhin
    V Hesselbrock
    J Kramer
    M T Lynskey
    J L Meyers
    J I Nurnberger
    J P Rice
    J Tischfield
    L J Bierut
    L Degenhardt
    L A Farrer
    J Gelernter
    A R Hariri
    A C Heath
    H R Kranzler
    P A F Madden
    N G Martin
    G W Montgomery
    B Porjesz
    T Wang
    J B Whitfield
    H J Edenberg
    T Foroud
    A M Goate
    R Bogdan
    E C Nelson
    Molecular Psychiatry, 2018, 23 : 1293 - 1302
  • [36] Genome-wide association study identifies MAPT locus influencing human plasma tau levels
    Chen, Jason
    Yu, Jin-Tai
    Wojta, Kevin
    Wang, Hui-Fu
    Zetterberg, Henrik
    Blennow, Kaj
    Yokoyama, Jennifer S.
    Weiner, Michael W.
    Kramer, Joel H.
    Rosen, Howard
    Miller, Bruce L.
    Coppola, Giovanni
    Boxer, Adam L.
    NEUROLOGY, 2017, 88 (07) : 669 - 676
  • [37] Genome-wide association study identifies a novel locus for cannabis dependence
    Agrawal, A.
    Chou, Y-L
    Carey, C. E.
    Baranger, D. A. A.
    Zhang, B.
    Sherva, R.
    Wetherill, L.
    Kapoor, M.
    Wang, J-C
    Bertelsen, S.
    Anokhin, A. P.
    Hesselbrock, V.
    Kramer, J.
    Lynskey, M. T.
    Meyers, J. L.
    Nurnberger, J. I.
    Rice, J. P.
    Tischfield, J.
    Bierut, L. J.
    Degenhardt, L.
    Farrer, L. A.
    Gelernter, J.
    Hariri, A. R.
    Heath, A. C.
    Kranzler, H. R.
    Madden, P. A. F.
    Martin, N. G.
    Montgomery, G. W.
    Porjesz, B.
    Wang, T.
    Whitfield, J. B.
    Edenberg, H. J.
    Foroud, T.
    Goate, A. M.
    Bogdan, R.
    Nelson, E. C.
    MOLECULAR PSYCHIATRY, 2018, 23 (05) : 1293 - 1302
  • [38] Genome-wide association study identifies a novel locus associated with strabismus
    Plotnikov, Denis
    Guggenheim, Jeremy A.
    Williams, Cathy
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [39] Genome-Wide Association Study Identifies a Novel Canine Glaucoma Locus
    Ahonen, Saija J.
    Pietila, Elina
    Mellersh, Cathryn S.
    Tiira, Katriina
    Hansen, Liz
    Johnson, Gary S.
    Lohi, Hannes
    PLOS ONE, 2013, 8 (08):
  • [40] Exploration of genome-wide two-locus SNP-SNP interactions relate to nasopharyngeal carcinoma susceptibility.
    Su, Wen-Hui
    Chang, Kai-Ping
    Shugart, Yin Yao
    Chang, Yu-Sun
    CANCER RESEARCH, 2013, 73 (08)