Anderson acceleration of coordinate descent

被引:0
作者
Bertrand, Quentin [1 ]
Massias, Mathurin [2 ]
机构
[1] Univ Paris Saclay, INRIA, CEA, Palaiseau, France
[2] Univ Genoa, DIBRIS, MaLGa, Genoa, Italy
来源
24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS) | 2021年 / 130卷
基金
欧洲研究理事会;
关键词
CONVERGENCE ACCELERATION; NUMERICAL RANGE; REGULARIZATION; SHRINKAGE; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Acceleration of first order methods is mainly obtained via inertia a la Nesterov, or via nonlinear extrapolation. The latter has known a recent surge of interest, with successful applications to gradient and proximal gradient techniques. On multiple Machine Learning problems, coordinate descent achieves performance significantly superior to full-gradient methods. Speeding up coordinate descent in practice is not easy: inertially accelerated versions of coordinate descent are theoretically accelerated, but might not always lead to practical speed-ups. We propose an accelerated version of coordinate descent using extrapolation, showing considerable speed up in practice, compared to inertial accelerated coordinate descent and extrapolated (proximal) gradient descent. Experiments on least squares, Lasso, elastic net and logistic regression validate the approach.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Shanks and Anderson-type acceleration techniques for systems of nonlinear equations [J].
Brezinski, Claude ;
Cipolla, Stefano ;
Redivo-Zaglia, Michela ;
Saad, Yousef .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) :3058-3093
[22]   Safeguarded Anderson acceleration for parametric nonexpansive operators [J].
Garstka, Michael ;
Cannon, Mark ;
Goulart, Paul .
2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, :435-440
[23]   Anderson Acceleration for Geometry Optimization and Physics Simulation [J].
Peng, Yue ;
Deng, Bailin ;
Zhang, Juyong ;
Geng, Fanyu ;
Qin, Wenjie ;
Liu, Ligang .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[24]   ANDERSON ACCELERATION FOR FIXED-POINT ITERATIONS [J].
Walker, Homer F. ;
Ni, Peng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1715-1735
[25]   ANDERSON ACCELERATION WITH TRUNCATED GRAM--SCHMIDT [J].
Tang, Ziyuan ;
Xu, Tianshi ;
He, Huan ;
Saad, Yousef ;
Xi, Yuanzhe .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (04) :1850-1872
[26]   Local linear convergence of proximal coordinate descent algorithm [J].
Klopfenstein, Quentin ;
Bertrand, Quentin ;
Gramfort, Alexandre ;
Salmon, Joseph ;
Vaiter, Samuel .
OPTIMIZATION LETTERS, 2024, 18 (01) :135-154
[27]   Block coordinate descent for smooth nonconvex constrained minimization [J].
Birgin, E. G. ;
Martinez, J. M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) :1-27
[28]   Inversion of electromagnetic geosoundings using coordinate descent optimization [J].
Hidalgo-Silva, Hugo ;
Gomez-Trevino, E. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (07) :1183-1198
[29]   Group coordinate descent algorithms for nonconvex penalized regression [J].
Wei, Fengrong ;
Zhu, Hongxiao .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) :316-326
[30]   Fast Lasso Algorithm via Selective Coordinate Descent [J].
Fujiwara, Yasuhiro ;
Ida, Yasutoshi ;
Shiokawa, Hiroaki ;
Iwamura, Sotetsu .
THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, :1561-1567