Anderson acceleration of coordinate descent

被引:0
|
作者
Bertrand, Quentin [1 ]
Massias, Mathurin [2 ]
机构
[1] Univ Paris Saclay, INRIA, CEA, Palaiseau, France
[2] Univ Genoa, DIBRIS, MaLGa, Genoa, Italy
来源
24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS) | 2021年 / 130卷
基金
欧洲研究理事会;
关键词
CONVERGENCE ACCELERATION; NUMERICAL RANGE; REGULARIZATION; SHRINKAGE; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Acceleration of first order methods is mainly obtained via inertia a la Nesterov, or via nonlinear extrapolation. The latter has known a recent surge of interest, with successful applications to gradient and proximal gradient techniques. On multiple Machine Learning problems, coordinate descent achieves performance significantly superior to full-gradient methods. Speeding up coordinate descent in practice is not easy: inertially accelerated versions of coordinate descent are theoretically accelerated, but might not always lead to practical speed-ups. We propose an accelerated version of coordinate descent using extrapolation, showing considerable speed up in practice, compared to inertial accelerated coordinate descent and extrapolated (proximal) gradient descent. Experiments on least squares, Lasso, elastic net and logistic regression validate the approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Conjugate Gradients Acceleration of Coordinate Descent for Linear Systems
    Gordon, Dan
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [2] Conjugate Gradients Acceleration of Coordinate Descent for Linear Systems
    Dan Gordon
    Journal of Scientific Computing, 2023, 96
  • [3] Efficient gradient descent algorithm with anderson acceleration for separable nonlinear models
    Chen, Guang-Yong
    Lin, Xin
    Xue, Peng
    Gan, Min
    NONLINEAR DYNAMICS, 2025, 113 (10) : 11371 - 11387
  • [4] When Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent
    Gurbuzbalaban, Mert
    Ozdaglar, Asuman
    Parrilo, Pablo A.
    Vanli, N. Denizcan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Coordinate descent algorithms
    Wright, Stephen J.
    MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 3 - 34
  • [6] Adaptive Coordinate Descent
    Loshchilov, Ilya
    Schoenauer, Marc
    Sebag, Michele
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 885 - 892
  • [7] Coordinate Descent for SLOPE
    Larsson, Johan
    Klopfenstein, Quentin
    Massias, Mathurin
    Wallin, Jonas
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [8] MINIMIZATION BY COORDINATE DESCENT
    ABATZOGLOU, T
    ODONNELL, B
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 36 (02) : 163 - 174
  • [9] Coordinate descent algorithms
    Stephen J. Wright
    Mathematical Programming, 2015, 151 : 3 - 34
  • [10] FILTERING FOR ANDERSON ACCELERATION*
    Pollock, Sara
    Rebholz, Leo G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A1571 - A1590