Siegmund Duality for Continuous Time Markov Chains on Z+d

被引:3
作者
Zhao, Pan [1 ]
机构
[1] Beijing Union Univ, Dept Basic Courses, Beijing 100101, Peoples R China
关键词
Continuous time Markov chains; the Siegmund dual; Mobius function; up arrow-Mobius monotonicity; Feller-Reuter-Riley transition functions; birth and death chains; RILEY TRANSITION FUNCTIONS;
D O I
10.1007/s10114-018-7064-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the continuous time Markov chain with transition function P(t) on Z(+)(d), we give the necessary and sufficient conditions for the existence of its Siegmund dual with transition function ((P) over tildet). If Q, the q-matrix of P(t), is uniformly bounded, we show that the Siegmund dual relation can be expressed directly in terms of q-matrices, and a sufficient condition under which the Q-function is the Siegmund dual of some Q-function is also given.
引用
收藏
页码:1460 / 1472
页数:13
相关论文
共 10 条
[1]  
Anderson W., 1991, CONTINUOUS TIME MARK, DOI 10.1007/978-1-4612-3038-0
[2]  
Chen A. Y, 1999, SE ASIAN B MATH, V23, P559
[3]   Applications of Feller-Reuter-Riley transition functions [J].
Chen, AY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (02) :439-456
[4]   Dual and Feller-Reuter-Riley transition functions [J].
Li, YR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (02) :461-474
[5]   Strong stationary duality for Mobius monotone Markov chains [J].
Lorek, Pawe ;
Szekli, Ryszard .
QUEUEING SYSTEMS, 2012, 71 (1-2) :79-95
[6]  
Lorenzo Pablo Ribalta, 2017, P GECCO, P1
[7]  
REUTER GEH, 1972, J LOND MATH SOC, V5, P267
[8]  
Rota G-C., 1964, Z WAHRSCH VERW GEBIE, V2, P340, DOI DOI 10.1007/BF00531932
[9]   EQUIVALENCE OF ABSORBING AND REFLECTING BARRIER PROBLEMS FOR STOCHASTICALLY MONOTONE MARKOV-PROCESSES [J].
SIEGMUND, D .
ANNALS OF PROBABILITY, 1976, 4 (06) :914-924
[10]   Stochastic comparability and dual Q-functions [J].
Zhang, HJ ;
Chen, AY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (02) :482-499