A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data

被引:6
作者
Shaikh, Mateen [1 ]
McNicholas, Paul D. [1 ]
Desmond, Anthony F. [1 ]
机构
[1] Univ Guelph, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
clustering; gene expression time course data; longitudinal data; missing data; mixture models; pseudo-EM; MAXIMUM-LIKELIHOOD; MISSING VALUES; MODELS;
D O I
10.2202/1557-4679.1223
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method for clustering incomplete longitudinal data, and gene expression time course data in particular, is presented. Specifically, an existing method that utilizes mixtures of multivariate Gaussian distributions with modified Cholesky-decomposed covariance structure is extended to accommodate incomplete data. Parameter estimation is carried out in a fashion that is similar to an expectation-maximization algorithm. We focus on the particular application of clustering incomplete gene expression time course data. In this application, our approach gives good clustering performance when compared to the results when there is no missing data. Possible extensions of this work are also suggested.
引用
收藏
页数:17
相关论文
共 25 条
[11]   Model-based clustering, discriminant analysis, and density estimation [J].
Fraley, C ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :611-631
[12]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218
[13]  
LITTLE R. J., 2019, Statistical analysis with missing data, V793
[14]   REGRESSION WITH MISSING XS - A REVIEW [J].
LITTLE, RJA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :1227-1237
[15]   Penalized clustering of large-scale functional data with multiple covariates [J].
Ma, Ping ;
Zhong, Wenxuan .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) :625-636
[16]   Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models [J].
McNicholas, P. D. ;
Murphy, T. B. ;
McDaid, A. F. ;
Frost, D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (03) :711-723
[17]   Model-based classification using latent Gaussian mixture models [J].
McNicholas, Paul D. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (05) :1175-1181
[18]   Parsimonious Gaussian mixture models [J].
McNicholas, Paul David ;
Murphy, Thomas Brendan .
STATISTICS AND COMPUTING, 2008, 18 (03) :285-296
[19]  
MCNICHOLAS PD, 2010, CANADIAN J IN PRESS, V38, DOI DOI 10.1002/CJS.10047
[20]  
PAULIK M, 2000, ANTIVIR THER, V5, P6