Stochastic Kolmogorov-Type Population Dynamics with Infinite Distributed Delays

被引:17
作者
Hu, Yangzi [1 ]
Wu, Fuke [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Kolmogorov-type systems; Infinite distributed delay; Global solution; Moment boundedness; DIFFERENTIAL-EQUATIONS; GLOBAL STABILITY; VOLTERRA; SYSTEMS; NOISE;
D O I
10.1007/s10440-009-9517-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows that different environmental noise structures have different effects on population systems. Under two classes of environmental noise perturbations, this paper establishes existence-and-uniqueness theorems of the global positive solution to the stochastic Kolmogorov-type system with infinite distributed delays. As the desired results to population dynamics, this paper also examines asymptotic boundedness, including the moment boundedness and the moment average boundedness in time. To illustrate our idea more clearly, we also discuss a scalar example with mixed delays and a n-dimensional stochastic Lotka-Volterra system with mixed delays.
引用
收藏
页码:1407 / 1428
页数:22
相关论文
共 22 条
[1]  
Arnold L., 1972, STOCHASTIC DIFFERENT
[2]   Stochastic delay Lotka-Volterra model [J].
Bahar, A ;
Mao, XR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (02) :364-380
[3]  
Bahar A., 2004, Int. J. Pure Appl. Math., V11, P377
[4]   Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay [J].
Bereketoglu, H ;
Gyori, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) :279-291
[5]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[6]   A study of a class of stochastic differential equations with non-Lipschitzian coefficients [J].
Fang, SZ ;
Zhang, TS .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (03) :356-390
[7]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74
[8]   The Lyapunov functionals for delay Lotka-Volterra-type models [J].
He, XZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) :1222-1236
[9]  
Khasminskii R., 1981, STOCHASTIC STABILITY
[10]   GLOBAL STABILITY FOR INFINITE DELAY LOTKA-VOLTERRA TYPE SYSTEMS [J].
KUANG, Y ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :221-246