STRONG A-INFINITY WEIGHTS AND SOBOLEV CAPACITIES IN METRIC MEASURE SPACES

被引:0
作者
Costea, Serban [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
HOUSTON JOURNAL OF MATHEMATICS | 2009年 / 35卷 / 04期
关键词
Strong A-infinity weights; Newtonian spaces; Poincare inequality; Sobolev capacity; LIPSCHITZ FUNCTIONS; INEQUALITIES; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies strong A-infinity weights in Ahlfors Q-regular unbounded and geodesic metric measure spaces satisfying a weak (1, s) Poincare inequality for some s in (1, Q] : For a fixed s in ( Q - 1, Q]; it is shown that a function u yields a strong A-infinity weight of the form w = exp (Qu) whenever the minimal s-weak upper gradient of u has sufficiently small Morrey s norm.
引用
收藏
页码:1233 / 1249
页数:17
相关论文
共 24 条
[1]  
Björn A, 2008, HOUSTON J MATH, V34, P1197
[2]  
Björn J, 2002, ILLINOIS J MATH, V46, P383
[3]  
Bonk M, 2004, CONTEMP MATH, V355, P77
[4]   Bi-Lipschitz parameterization of surfaces [J].
Bonk, M ;
Lang, U .
MATHEMATISCHE ANNALEN, 2003, 327 (01) :135-169
[5]   Logarithmic potentials, quasiconformal flows, and Q-curvature [J].
Bonk, Mario ;
Heinonen, Juha ;
Saksman, Eero .
DUKE MATHEMATICAL JOURNAL, 2008, 142 (02) :197-239
[6]   Inequalities of John-Nirenberg type in doubling spaces [J].
Buckley, SM .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1) :215-240
[7]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[8]  
Costea S, 2007, REV MAT IBEROAM, V23, P1067
[9]  
Costea S, 2009, ANN ACAD SCI FENN-M, V34, P179
[10]  
David G., 1990, ANAL PARTIAL DIFFERE, P101