A supercritical estimate for Bessel potentials on Lorentz spaces

被引:0
作者
Chen, You-Wei [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2021年 / 28卷 / 02期
关键词
Bessel potential; Lorentz space; Fractional integration inequality;
D O I
10.1007/s00030-021-00675-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a simple proof of an estimate for Bessel potentials acting on Lorentz spaces in the supercritical exponent: let 1 < p = d/alpha-1 and 1 <= q <= +infinity. If f is an element of L-p,L-q (R-d), then there exists a constant C = C(alpha, d, p, q) such that vertical bar g(alpha) * f(x) - g(alpha) * f(z)vertical bar <= C vertical bar x - z| (vertical bar ln(vertical bar x - z vertical bar)vertical bar + 1)1/q' parallel to f parallel to (Lp,q).
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A supercritical estimate for Bessel potentials on Lorentz spaces
    You-Wei Chen
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [2] Optimal Calderon spaces for generalized Bessel potentials
    M. L. Goldman
    D. Haroske
    Doklady Mathematics, 2015, 92 : 404 - 407
  • [3] Bessel Potentials in Ahlfors Regular Metric Spaces
    Miguel Andrés Marcos
    Potential Analysis, 2016, 45 : 201 - 227
  • [4] Generalized bessel potentials on Lipschitz type spaces
    Iaffei, B
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) : 421 - 436
  • [5] Bessel Potentials in Ahlfors Regular Metric Spaces
    Andres Marcos, Miguel
    POTENTIAL ANALYSIS, 2016, 45 (02) : 201 - 227
  • [6] A Kind of Estimate of Difference Norms in Anisotropic Weighted Sobolev-Lorentz Spaces
    Jiecheng Chen
    Hongliang Li
    Journal of Inequalities and Applications, 2009
  • [7] Optimal calderon space for bessel potentials
    M. L. Goldman
    D. Haroske
    Doklady Mathematics, 2014, 90 : 599 - 602
  • [8] Boundedness of Gaussian Bessel potentials and fractional derivatives on variable Gaussian Besov-Lipschitz spaces
    Pineda, Ebner
    Rodriguez, Luz
    Urbina, Wilfredo
    AIMS MATHEMATICS, 2025, 10 (01): : 1026 - 1042
  • [9] OPERATORS ON LORENTZ SEQUENCE SPACES
    Arora, S. C.
    Datt, Gopal
    Verma, Satish
    MATHEMATICA BOHEMICA, 2009, 134 (01): : 87 - 98
  • [10] Interpolation of Lorentz martingale spaces
    Ren YanBo
    Guo TieXin
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (09) : 1951 - 1959