Multi-bang control of elliptic systems

被引:28
作者
Clason, Christian [1 ]
Kunisch, Karl [1 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 06期
基金
奥地利科学基金会;
关键词
Optimal control; Elliptic partial differential equations; Nonconvex relaxation; Fenchel duality; Newton methods; OPTIMALITY CONDITIONS; PRINCIPLE; COST;
D O I
10.1016/j.anihpc.2013.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multi-bang control refers to optimal control problems for partial differential equations where a distributed control should only take on values from a discrete set of allowed states. This property can be promoted by a combination of L-2 and L-0-type control costs. Although the resulting functional is nonconvex and lacks weak lower-semicontinuity, application of Fenchel duality yields a formal primal-dual optimality system that admits a unique solution. This solution is in general only suboptimal, but the optimality gap can be characterized and shown to be zero under appropriate conditions. Furthermore, in certain situations it is possible to derive a generalized multi-bang principle, i.e., to prove that the control almost everywhere takes on allowed values except on sets where the corresponding state reaches the target. A regularized semismooth Newton method allows the numerical computation of (sub)optimal controls. Numerical examples illustrate the effectiveness of the proposed approach as well as the structural properties of multi-bang controls. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1109 / 1130
页数:22
相关论文
共 25 条
[1]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[2]  
[Anonymous], 201219 SFB MOBIS
[3]  
[Anonymous], 1999, CLASSICS APPL MATH, DOI DOI 10.1137/1.9781611971088
[4]  
[Anonymous], 2010, FUNCTIONAL ANAL
[5]  
[Anonymous], 2011, MOS SIAM SERIES OPTI
[6]  
[Anonymous], DISCRETE B IN PRESS
[7]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[8]   Optimality conditions and generalized bang-bang principle for a state-constrained semilinear parabolic problem [J].
Bergounioux, M ;
Troltzsch, F .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (5-6) :517-536
[9]  
Bergounioux M, 1996, LECT NOTES PURE APPL, V174, P23
[10]   OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L1 COST FUNCTIONAL [J].
Casas, Eduardo ;
Herzog, Roland ;
Wachsmuth, Gerd .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (03) :795-820