Optimal Parameter Identification for a Hydrodynamic Roll Gap Model in Hot Strip Rolling

被引:5
作者
Mueller, Martin [1 ]
Steinboeck, Andreas [2 ]
Prinz, Katharina [1 ]
Kugi, Andreas [1 ]
机构
[1] TU Wien, Christian Doppler Lab Model Based Proc Control St, Automat & Control Inst ACIN, Vienna, Austria
[2] TU Wien, Automat & Control Inst ACIN, Vienna, Austria
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 21期
关键词
Hot strip rolling; Hydrodynamic roll gap model; Optimal parameter identification; Lubrication; Nonlinear least-squares identification; Steel industry; PRESSURE; FORCE;
D O I
10.1016/j.ifacol.2018.09.417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When using modern model-based control concepts in a hot strip rolling mill, an accurate prediction of the roll force is crucial for the achieved control accuracy in terms of the strip thickness. Hence, the influence of various process parameters, e.g., lubrication, on the roll force is of central interest. Commonly used roll gap models are based on the slab method and are often not capable of describing these influences. The hydrodynamic roll gap model, however, can capture the influence of varying friction conditions between the strip and the work rolls. Varying friction conditions can be caused, for instance, by lubrication. This paper presents a combination of the hydrodynamic roll gap model with tailored material models for a more accurate prediction of the roll force in a tandem rolling mill. To parametrize the model, an optimization-based identification algorithm is proposed for unknown friction coefficients and material parameters. The identification algorithm is used on measurement data from an industrial hot strip rolling mill. A comparison with a commonly used roll gap model shows that the parametrized hydrodynamic roll gap model predicts the roll force with significantly higher accuracy. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 20 条
[1]   Calculation of rolling pressure distribution and force based on improved Karman equation for hot strip mill [J].
Chen, Shuixuan ;
Li, Weigang ;
Liu, Xianghua .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 89 :256-263
[2]   Simplified theories of flat rolling .1. The calculation of roll pressure, roll force and roll torque [J].
Freshwater, IJ .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1996, 38 (06) :633-648
[3]  
Hensel A., 1978, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, V1
[4]   Modelling austenite flow curves in low alloy and microalloyed steels [J].
Hernandez, CA ;
Medina, SF ;
Ruiz, J .
ACTA MATERIALIA, 1996, 44 (01) :155-163
[5]   On Tikhonov regularization, bias and variance in nonlinear system identification [J].
Johansen, TA .
AUTOMATICA, 1997, 33 (03) :441-446
[6]  
Jung C., 2017, INT J ADV MANUF PROB
[7]  
Kaltenbacher B, 2008, RADON SER COMPUT APP, V6, P1, DOI 10.1515/9783110208276
[8]  
Kneschke A., 1964, FREIBERG FORSCHUNG B, V94, P9
[9]   Hydrodynamics Method and Its Application in Hot Strip Rolling [J].
Li, Si ;
Wang, Zhigang ;
Ruan, Jinhua ;
Liu, Changming ;
Xu, Zengbing .
STEEL RESEARCH INTERNATIONAL, 2017, 88 (04)
[10]   A simplified method to calculate the rolling force in hot rolling [J].
Li, Si ;
Wang, Zhigang ;
Liu, Changming ;
Ruan, Jinhua ;
Xu, Zengbing .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 88 (5-8) :2053-2059