Bayesian estimation and influence diagnostics of generalized partially linear mixed-effects models for longitudinal data

被引:4
作者
Duan, Xing-De [1 ,2 ]
Tang, Nian-Sheng [1 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Chuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Bayesian case deletion influence; Cook's posterior mean distance; Fisher's iterative scoring algorithm; generalized partial linear mixed models; phi-divergence; 62H12; 62F15; DELETION DIAGNOSTICS; ESTIMATING EQUATIONS; ROBUST ESTIMATION; REGRESSION; LIKELIHOOD; INFERENCE;
D O I
10.1080/02331888.2015.1078332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian approach to obtain the joint estimates of unknown parameters, nonparametric functions and random effects in generalized partially linear mixed models (GPLMMs), and presents three case deletion influence measures to identify influential observations based on the phi-divergence, Cook's posterior mean distance and Cook's posterior mode distance of parameters. Fisher's iterative scoring algorithm is developed to evaluate the posterior modes of parameters in GPLMMs. The first-order approximation to Cook's posterior mode distance is presented. The computationally feasible formulae for the phi-divergence diagnostic and Cook's posterior mean distance are given. Several simulation studies and an example are presented to illustrate our proposed methodologies.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 50 条
[41]   High-dimensional semiparametric mixed-effects model for longitudinal data with non-normal errors [J].
Taavoni, Mozhgan ;
Arashi, Mohammad .
STATISTICS, 2025, 59 (01) :207-227
[42]   Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution [J].
Rikhtehgaran, Reyhaneh ;
Kazemi, Iraj .
COMPUTATIONAL STATISTICS, 2013, 28 (05) :2007-2027
[43]   Longitudinal mixed-effects models for latent cognitive function [J].
van den Hout, Ardo ;
Fox, Jean-Paul ;
Muniz-Terrera, Graciela .
STATISTICAL MODELLING, 2015, 15 (04) :366-387
[44]   GENERALIZED S-ESTIMATORS FOR LINEAR MIXED EFFECTS MODELS [J].
Chervoneva, Inna ;
Vishnyakov, Mark .
STATISTICA SINICA, 2014, 24 (03) :1257-1276
[45]   Robust estimation of partially linear models for longitudinal data with dropouts and measurement error [J].
Qin, Guoyou ;
Zhang, Jiajia ;
Zhu, Zhongyi ;
Fung, Wing .
STATISTICS IN MEDICINE, 2016, 35 (29) :5401-5416
[46]   Joint mean-covariance model in generalized partially linear varying coefficient models for longitudinal data [J].
Qin, Guoyou ;
Mao, Jie ;
Zhu, Zhongyi .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (06) :1166-1182
[47]   A Two-Step Method of Estimation for Non-Linear Mixed-Effects Models [J].
Wang, Jianling ;
Luan, Yihui ;
Jiang, Jiming .
MATHEMATICS, 2022, 10 (23)
[48]   Bayesian quantile semiparametric mixed-effects double regression models [J].
Zhang, Duo ;
Wu, Liucang ;
Ye, Keying ;
Wang, Min .
STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (04) :303-315
[49]   Bayesian analysis of semiparametric reproductive dispersion mixed-effects models [J].
Chen, Xue-Dong ;
Tang, Nian-Sheng .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (09) :2145-2158
[50]   Tweedie family of generalized linear models with distribution-free random effects for skewed longitudinal data [J].
Ma, Renjun ;
Yan, Guohua ;
Hasan, M. Tariqul .
STATISTICS IN MEDICINE, 2018, 37 (24) :3519-3532