Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains

被引:9
|
作者
Smekenov, Izat [1 ,2 ]
Bakhtambayeva, Marzhan [1 ,2 ]
Bissenbayev, Kudaybergen [2 ,3 ]
Saparbayev, Murat [4 ]
Taipakova, Sabira [1 ,2 ]
Bissenbaev, Amangeldy K. [1 ,2 ]
机构
[1] Al Farabi Kazakh Natl Univ, Fac Biol & Biotechnol, Dept Mol Biol & Genet, Alma Ata 050040, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Sci Res Inst Biol & Biotechnol Problems, Alma Ata 050040, Kazakhstan
[3] Nazarbayev Intellectual Sch, Alma Ata 050044, Kazakhstan
[4] Univ Paris Sud, CNRS, UMR8200, Gustave Roussy Canc Campus, F-94805 Villejuif, France
关键词
Thermoascus aurantiacus; Saccharomyces cerevisiae; beta-Glucosidase; Cellobiose; Industrial strains; Ethanol; ETHANOL-PRODUCTION; SIMULTANEOUS SACCHARIFICATION; GLYCOSYLATION; FERMENTATION; YEAST; CELL; GROWTH; OPTIMIZATION; HYDROLYSIS; INHIBITORS;
D O I
10.1007/s42770-019-00192-1
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily cellobiose, because it is the major soluble by-product of cellulose and acts as a strong inhibitor, especially for cellobiohydrolase, which plays a key role in cellulose hydrolysis. Commonly used ethanologenic yeast Saccharomyces cerevisiae is unable to utilize cellobiose; accordingly, genetic engineering efforts have been made to transfer beta-glucosidase genes enabling cellobiose utilization. Nonetheless, laboratory yeast strains have been employed for most of this research, and such strains may be difficult to use in industrial processes because of their generally weaker resistance to stressors and worse fermenting abilities. The purpose of this study was to engineer industrial yeast strains to ferment cellobiose after stable integration of tabgl1 gene that encodes a beta-glucosidase from Thermoascus aurantiacus (TaBgl1). The recombinant S. cerevisiae strains obtained in this study secrete TaBgl1, which can hydrolyze cellobiose and produce ethanol. This study clearly indicates that the extent of glycosylation of secreted TaBgl1 depends from the yeast strains used and is greatly influenced by carbon sources (cellobiose or glucose). The recombinant yeast strains showed high osmotolerance and resistance to various concentrations of ethanol and furfural and to high temperatures. Therefore, these yeast strains are suitable for ethanol production processes with saccharified lignocellulose.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 50 条
  • [41] Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera
    Gurgu, Leontina
    Lafraya, Alvaro
    Polaina, Julio
    Marin-Navarro, Julia
    BIORESOURCE TECHNOLOGY, 2011, 102 (08) : 5229 - 5236
  • [42] Kinetics of β-glucosidase production by Saccharomyces cerevisiae recombinants harboring heterologous bgl genes
    M.I. Rajoka
    Farhana Shaukat
    M.T. Ghauri
    Riaz Shahid
    Biotechnology Letters, 2003, 25 : 945 - 948
  • [43] Development of fed-batch process for high-yielding β-glucosidase displayed on cell surface of industrial yeast Saccharomyces cerevisiae
    Onodera, Kaoru
    Hama, Shinji
    Yoshida, Ayumi
    Noda, Hideo
    Kondo, Akihiko
    BIOCHEMICAL ENGINEERING JOURNAL, 2017, 128 : 195 - 200
  • [44] Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae
    Bergman, Alexandra
    Siewers, Verena
    Nielsen, Jens
    Chen, Yun
    AMB EXPRESS, 2016, 6
  • [45] Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
    Flagfeldt, Dongmei Bai
    Siewers, Verena
    Huang, Le
    Nielsen, Jens
    YEAST, 2009, 26 (10) : 545 - 551
  • [46] Heterologous Expression and Assembly of Human TLR Signaling Components in Saccharomyces cerevisiae
    Coronas-Serna, Julia Maria
    del Val, Elba
    Kagan, Jonathan C.
    Molina, Maria
    Cid, Victor J.
    BIOMOLECULES, 2021, 11 (11)
  • [47] Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae
    Bae, Jung-Hoon
    Kim, Mi-Jin
    Sung, Bong Hyun
    Jin, Yong-Su
    Sohn, Jung-Hoon
    BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
  • [48] EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains
    Stovicek, Vratislav
    Borja, Gheorghe M.
    Forster, Jochen
    Borodina, Irina
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (11) : 1519 - 1531
  • [49] Optimization of bioethanol production from soybean molasses using different strains of Saccharomyces cerevisiae
    Roncevic, Zorana
    Bajic, Bojana
    Dodic, Sinisa
    Grahovac, Jovana
    Pajovic-Scepanovic, Radmila
    Dodic, Jelena
    HEMIJSKA INDUSTRIJA, 2019, 73 (01) : 1 - 12
  • [50] Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
    Ismail, Ku Syahidah Ku
    Sakamoto, Takatoshi
    Hatanaka, Haruyo
    Hasunuma, Tomohisa
    Kondo, Akihiko
    JOURNAL OF BIOTECHNOLOGY, 2013, 163 (01) : 50 - 60