Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains

被引:9
|
作者
Smekenov, Izat [1 ,2 ]
Bakhtambayeva, Marzhan [1 ,2 ]
Bissenbayev, Kudaybergen [2 ,3 ]
Saparbayev, Murat [4 ]
Taipakova, Sabira [1 ,2 ]
Bissenbaev, Amangeldy K. [1 ,2 ]
机构
[1] Al Farabi Kazakh Natl Univ, Fac Biol & Biotechnol, Dept Mol Biol & Genet, Alma Ata 050040, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Sci Res Inst Biol & Biotechnol Problems, Alma Ata 050040, Kazakhstan
[3] Nazarbayev Intellectual Sch, Alma Ata 050044, Kazakhstan
[4] Univ Paris Sud, CNRS, UMR8200, Gustave Roussy Canc Campus, F-94805 Villejuif, France
关键词
Thermoascus aurantiacus; Saccharomyces cerevisiae; beta-Glucosidase; Cellobiose; Industrial strains; Ethanol; ETHANOL-PRODUCTION; SIMULTANEOUS SACCHARIFICATION; GLYCOSYLATION; FERMENTATION; YEAST; CELL; GROWTH; OPTIMIZATION; HYDROLYSIS; INHIBITORS;
D O I
10.1007/s42770-019-00192-1
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily cellobiose, because it is the major soluble by-product of cellulose and acts as a strong inhibitor, especially for cellobiohydrolase, which plays a key role in cellulose hydrolysis. Commonly used ethanologenic yeast Saccharomyces cerevisiae is unable to utilize cellobiose; accordingly, genetic engineering efforts have been made to transfer beta-glucosidase genes enabling cellobiose utilization. Nonetheless, laboratory yeast strains have been employed for most of this research, and such strains may be difficult to use in industrial processes because of their generally weaker resistance to stressors and worse fermenting abilities. The purpose of this study was to engineer industrial yeast strains to ferment cellobiose after stable integration of tabgl1 gene that encodes a beta-glucosidase from Thermoascus aurantiacus (TaBgl1). The recombinant S. cerevisiae strains obtained in this study secrete TaBgl1, which can hydrolyze cellobiose and produce ethanol. This study clearly indicates that the extent of glycosylation of secreted TaBgl1 depends from the yeast strains used and is greatly influenced by carbon sources (cellobiose or glucose). The recombinant yeast strains showed high osmotolerance and resistance to various concentrations of ethanol and furfural and to high temperatures. Therefore, these yeast strains are suitable for ethanol production processes with saccharified lignocellulose.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 50 条
  • [31] Expression of a Glucose-tolerant β-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae
    Benoliel, Bruno
    Pocas-Fonseca, Marcio Jose
    Goncalves Torres, Fernando Araripe
    Pepe de Moraes, Lidia Maria
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 160 (07) : 2036 - 2044
  • [32] Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae
    Lilly, Mariska
    Fierobe, Henri-Pierre
    van Zyl, Willem H.
    Volschenk, Heinrich
    FEMS YEAST RESEARCH, 2009, 9 (08) : 1236 - 1249
  • [33] Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae
    Knychala, Marilia M.
    dos Santos, Angela A.
    Kretzer, Leonardo G.
    Gelsleichter, Fernanda
    Leandro, Maria Jose
    Fonseca, Cesar
    Stambuk, Boris U.
    JOURNAL OF FUNGI, 2022, 8 (01)
  • [34] Heterologous expression of dammarenediol synthase gene in an engineered Saccharomyces cerevisiae
    Liang, Y. -L.
    Zhao, S. -J.
    Xu, L. -X.
    Zhang, X. -Y.
    LETTERS IN APPLIED MICROBIOLOGY, 2012, 55 (05) : 323 - 329
  • [35] Bioenergy II: Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for their Stress Tolerance
    Geng, Anli
    Wang, Zhankun
    Lai, Kok Soon
    Tan, Mark Wei Yi
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2010, 8
  • [36] Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains
    Hou, L.
    Cao, X.
    Wang, C.
    Lu, M.
    LETTERS IN APPLIED MICROBIOLOGY, 2009, 49 (01) : 14 - 19
  • [37] Construction of industrial Saccharomyces cerevisiae strains for the efficient consolidated bioprocessing of raw starch
    Cripwell, Rosemary A.
    Rose, Shaunita H.
    Favaro, Lorenzo
    van Zyl, Willem H.
    BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
  • [38] Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant Industrial Saccharomyces cerevisiae Strains
    Costa, Carlos E.
    Moller-Hansen, Iben
    Romani, Aloia
    Teixeira, Jose A.
    Borodina, Irina
    Domingues, Lucilia
    ACS SYNTHETIC BIOLOGY, 2021, 10 (08): : 1895 - 1903
  • [39] Trebbiano wine produced by using Saccharomyces cerevisiae strains endowed with β-glucosidase activity
    Vernocchi, Pamela
    Patrignani, Francesca
    Ndagijimana, Maurice
    Lopez, Clemencia Chaves
    Suzzi, Giovanna
    Gardini, Fausto
    Lanciotti, Rosalba
    ANNALS OF MICROBIOLOGY, 2015, 65 (03) : 1565 - 1571
  • [40] Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies
    Wickramasinghe, Gammadde Hewa Ishan Maduka
    Rathnayake, Pilimathalawe Panditharathna Attanayake Mudiyanselage Samith Indika
    Chandrasekharan, Naduviladath Vishvanath
    Weerasinghe, Mahindagoda Siril Samantha
    Wijesundera, Ravindra Lakshman Chundananda
    Wijesundera, Wijepurage Sandhya Sulochana
    BMC MICROBIOLOGY, 2017, 17 : 1 - 12