Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains

被引:9
|
作者
Smekenov, Izat [1 ,2 ]
Bakhtambayeva, Marzhan [1 ,2 ]
Bissenbayev, Kudaybergen [2 ,3 ]
Saparbayev, Murat [4 ]
Taipakova, Sabira [1 ,2 ]
Bissenbaev, Amangeldy K. [1 ,2 ]
机构
[1] Al Farabi Kazakh Natl Univ, Fac Biol & Biotechnol, Dept Mol Biol & Genet, Alma Ata 050040, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Sci Res Inst Biol & Biotechnol Problems, Alma Ata 050040, Kazakhstan
[3] Nazarbayev Intellectual Sch, Alma Ata 050044, Kazakhstan
[4] Univ Paris Sud, CNRS, UMR8200, Gustave Roussy Canc Campus, F-94805 Villejuif, France
关键词
Thermoascus aurantiacus; Saccharomyces cerevisiae; beta-Glucosidase; Cellobiose; Industrial strains; Ethanol; ETHANOL-PRODUCTION; SIMULTANEOUS SACCHARIFICATION; GLYCOSYLATION; FERMENTATION; YEAST; CELL; GROWTH; OPTIMIZATION; HYDROLYSIS; INHIBITORS;
D O I
10.1007/s42770-019-00192-1
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily cellobiose, because it is the major soluble by-product of cellulose and acts as a strong inhibitor, especially for cellobiohydrolase, which plays a key role in cellulose hydrolysis. Commonly used ethanologenic yeast Saccharomyces cerevisiae is unable to utilize cellobiose; accordingly, genetic engineering efforts have been made to transfer beta-glucosidase genes enabling cellobiose utilization. Nonetheless, laboratory yeast strains have been employed for most of this research, and such strains may be difficult to use in industrial processes because of their generally weaker resistance to stressors and worse fermenting abilities. The purpose of this study was to engineer industrial yeast strains to ferment cellobiose after stable integration of tabgl1 gene that encodes a beta-glucosidase from Thermoascus aurantiacus (TaBgl1). The recombinant S. cerevisiae strains obtained in this study secrete TaBgl1, which can hydrolyze cellobiose and produce ethanol. This study clearly indicates that the extent of glycosylation of secreted TaBgl1 depends from the yeast strains used and is greatly influenced by carbon sources (cellobiose or glucose). The recombinant yeast strains showed high osmotolerance and resistance to various concentrations of ethanol and furfural and to high temperatures. Therefore, these yeast strains are suitable for ethanol production processes with saccharified lignocellulose.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 50 条
  • [1] Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains
    Izat Smekenov
    Marzhan Bakhtambayeva
    Kudaybergen Bissenbayev
    Murat Saparbayev
    Sabira Taipakova
    Amangeldy K. Bissenbaev
    Brazilian Journal of Microbiology, 2020, 51 : 107 - 123
  • [2] Fungal β-glucosidase expression in Saccharomyces cerevisiae
    Njokweni, A. P.
    Rose, S. H.
    van Zyl, W. H.
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (10) : 1445 - 1452
  • [3] Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains
    Davison, Steffi A.
    den Haan, Riaan
    van Zyl, Willem Heber
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (18) : 8241 - 8254
  • [4] The heterologous expression potential of an acid-tolerant Talaromyces pinophilus β-glucosidase in Saccharomyces cerevisiae
    Trollope, Kim
    Nel, De Wet
    Volschenk, Heinrich
    FOLIA MICROBIOLOGICA, 2018, 63 (06) : 725 - 734
  • [5] Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus
    Jiong Hong
    Hisanori Tamaki
    Hidehiko Kumagai
    Applied Microbiology and Biotechnology, 2007, 73 : 1331 - 1339
  • [6] Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes
    Jeon, Eugene
    Hyeon, Jeong-eun
    Suh, Dong Jin
    Suh, Young-Woong
    Kim, Seoung Wook
    Song, Kwang Ho
    Han, Sung Ok
    MOLECULES AND CELLS, 2009, 28 (04) : 369 - 373
  • [7] Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass
    Kasavi, Ceyda
    Finore, Ilaria
    Lama, Licia
    Nicolaus, Barbara
    Oliver, Stephen G.
    Oner, Ebru Toksoy
    Kirdar, Betul
    BIOMASS & BIOENERGY, 2012, 45 : 230 - 238
  • [8] Qualitative and quantitative screening of the -glucosidase activity in Saccharomyces cerevisiae and Saccharomyces uvarum strains isolated from refrigerated must
    Bonciani, T.
    De Vero, L.
    Giannuzzi, E.
    Verspohl, A.
    Giudici, P.
    LETTERS IN APPLIED MICROBIOLOGY, 2018, 67 (01) : 72 - 78
  • [9] Production and capture of β-glucosidase from Thermoascus aurantiacus using a tailor made anionic cryogel
    Gouveia Mol, Paula Chequer
    Alcantara Verissimo, Lizzy Ayra
    Minim, Luis Antonio
    Boscolo, Mauricio
    Gomes, Eleni
    da Silva, Roberto
    PROCESS BIOCHEMISTRY, 2019, 82 : 75 - 83
  • [10] Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose
    Javier Rios-Franquez, Francisco
    Gonzalez-Bautista, Enrique
    Ponce-Noyola, Teresa
    Carmela Ramos-Valdivia, Ana
    Mario Poggi-Varaldo, Hector
    Garcia-Mena, Jaime
    Martinez, Alfredo
    ARCHIVES OF MICROBIOLOGY, 2017, 199 (04) : 605 - 611