Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space

被引:13
作者
Herlach, Dieter M. [1 ,2 ]
Burggraf, Stefan [1 ,2 ]
Galenko, Peter [3 ]
Gandin, Charles-Andre [4 ]
Garcia-Escorial, Asuncion [5 ]
Henein, Hani [6 ]
Karrasch, Christian [2 ]
Mullis, Andrew [7 ]
Rettenmayr, Markus [3 ]
Valloton, Jonas [6 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst Mat Phys Weltraum, D-51170 Cologne, Germany
[2] Ruhr Univ Bochum, Inst Expt Phys 4, D-44780 Bochum, Germany
[3] Friedrich Schiller Univ Jena, Otto Schott Inst Mat Forsch, Lobdergraben 32, D-07743 Jena, Germany
[4] MINES ParisTech, CEMEF UMR CNRS 7635, 1 Rue Claude Daunesse,CS 10207, F-06904 Sophia Antipolis, France
[5] CENIM CSIC, Met Fis, Avda Gregorio del Amo 8, Madrid 28040, Spain
[6] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[7] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
基金
俄罗斯科学基金会;
关键词
SOLUTE DIFFUSION-MODEL; DENDRITIC GROWTH; METALLIC MELTS; NONEQUILIBRIUM; ALUMINUM; NI; GLASS; DROPLETS;
D O I
10.1007/s11837-017-2402-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Containerless processing of droplets and drops by atomization and electromagnetic levitation are applied to undercool metallic melts and alloys prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. Experiments are performed both under terrestrial (1 g) conditions and in reduced gravity (A mu g) as well. Microgravity conditions are realized by the free fall of small droplets during atomization of a spray of droplets, individual drops in a drop tube and by electromagnetic levitation of drops during parabolic flights, sounding rocket missions, and using the electro-magnetic levitator multi-user facility on board the International Space Station. The comparison of both sets of experiments in 1 g and A mu g leads to an estimation of the influence of forced convection on dendrite growth kinetics and microstructure evolution.
引用
收藏
页码:1303 / 1310
页数:8
相关论文
共 43 条
[1]  
Alexandrov D. V., 2017, PHYS REV E IN PRESS
[2]  
[Anonymous], 2008, THERMO CALC SOFTWARE
[3]  
Boettinger W.J., 1988, RAPID SOLIDIFICATION, P13
[4]   Simulations of three-dimensional dendritic growth using a coupled thermo-solutal phase-field model [J].
Bollada, P. C. ;
Goodyer, C. E. ;
Jimack, P. K. ;
Mullis, A. M. .
APPLIED PHYSICS LETTERS, 2015, 107 (05)
[5]   Three dimensional thermal-solute phase field simulation of binary alloy solidification [J].
Bollada, P. C. ;
Goodyer, C. E. ;
Jimack, P. K. ;
Mullis, A. M. ;
Yang, F. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 287 :130-150
[6]   Effect of convective flow on stable dendritic growth in rapid solidification of a binary alloy [J].
Galenko, P. K. ;
Danilov, D. A. ;
Reuther, K. ;
Alexandrov, D. V. ;
Rettenmayr, M. ;
Herlach, D. M. .
JOURNAL OF CRYSTAL GROWTH, 2017, 457 :349-355
[7]   Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt [J].
Galenko, PK ;
Danilov, DA .
PHYSICS LETTERS A, 1997, 235 (03) :271-280
[8]   Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions [J].
Galenko, PK ;
Danilov, DA .
JOURNAL OF CRYSTAL GROWTH, 1999, 197 (04) :992-1002
[9]  
Gandin C. - A., 2008, ACTA MAT, V10, P444
[10]   TRANSFORMATION KINETICS AND BULK GLASS-FORMATION OF PD-NI-P [J].
GILLESSEN, F ;
HERLACH, DM ;
FEUERBACHER, B .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE NEUE FOLGE, 1988, 156 :129-133