EXISTENCE OF THREE SOLUTIONS FOR A NONLOCAL TRANSMISSION PROBLEM

被引:0
作者
Cammaroto, Filippo [1 ]
Vilasi, Luca [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, Viale F Stagno Alcontres 31, I-98166 Messina, Italy
关键词
Nonlinear transmission problem; Kirchhoff-type problem; p(x)-Laplacian; critical point;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the multiplicity of weak solutions for a nonlinear transmission problem involving nonlocal coefficients of p(x)-Kirchhoff-type. Working in the setting of variable exponent spaces and using a variational approach, we establish the existence of three weak solutions.
引用
收藏
页码:421 / 439
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1950, Theory of Functions of a Real Variable
[2]   EXISTENCE OF THREE SOLUTIONS FOR A DEGENERATE KIRCHHOFF-TYPE TRANSMISSION PROBLEM [J].
Cammaroto, F. ;
Vilasi, L. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) :911-931
[3]   Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1841-1852
[4]   Nontrivial Solution for a Nonlocal Elliptic Transmission Problem in Variable Exponent Sobolev Spaces [J].
Cekic, Bilal ;
Mashiyev, Rabil A. .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[5]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[6]   Positive solutions for Robin problem involving the p(x)-Laplacian [J].
Deng, Shao-Gao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :548-560
[7]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[8]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[9]  
Figueiredo GM, 2012, ARCH MATH, V99, P271, DOI 10.1007/s00013-012-0428-5
[10]  
Kirchhoff G., 1883, VORLESUNGEN MATH PHY