ON THE ADJACENCY DIMENSION OF GRAPHS

被引:15
作者
Estrada-Moreno, A. [1 ]
Ramirez-Cruz, Y. [1 ]
Rodriguez-Velazquez, J. A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Adjacency dimension; metric dimension; k-metric dimension; METRIC DIMENSION;
D O I
10.2298/AADM151109022E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the problem of finding the k-adjacency dimension of a graph. We give some necessary and sufficient conditions for the existence of a k-adjacency basis of an arbitrary graph G and we obtain general results on the k-adjacency dimension, including general bounds and closed formulae for some families of graphs.
引用
收藏
页码:102 / 127
页数:26
相关论文
共 18 条
[1]  
Brigham R.C., 2003, Math. Bohem., V128, P25, DOI DOI 10.21136/MB.2003.133935
[2]  
Chartrand G., 2003, MATH BOHEM, V128, P379, DOI DOI 10.21136/MB.2003.134003
[3]  
ESTRADA-MORENO A., DISCRETE MA IN PRESS
[4]  
ESTRADA-MORENO A., B MALAYS MA IN PRESS
[5]  
Estrada-Moreno A., 2014, ELECT NOTES DISCRETE, V46, P121
[6]  
Estrado-Moreno A., 2015, Appl. Math. Inf. Sci., V9, P2829, DOI DOI 10.12785/AMIS/090609
[7]  
Fernau Henning, 2014, Computer Science - Theory and Applications. 9th International Computer Science Symposium in Russia, CSR 2014. Proceedings: LNCS 8476, P153, DOI 10.1007/978-3-319-06686-8_12
[8]  
Harary F., 1976, ARS COMBINATORIA, V2, P191, DOI DOI 10.1016/J.DAM.2012.10.018
[9]  
Hernando C., 2005, Electron. Notes Discrete Math., V22, P129, DOI [DOI 10.1016/J.ENDM.2005.06.023, 10.1016/j.endm.2005.06.023]
[10]   The metric dimension of the lexicographic product of graphs [J].
Jannesari, Mohsen ;
Omoomi, Behnaz .
DISCRETE MATHEMATICS, 2012, 312 (22) :3349-3356