Tangshenning Attenuates High Glucose-Induced Podocyte Injury via Restoring Autophagy Activity through Inhibiting mTORC1 Activation

被引:7
作者
Xu, Jiayi [1 ,2 ]
Shan, Xiaomeng [1 ,2 ]
Chen, Chunwei [1 ,2 ]
Gao, Yanbin [1 ,2 ]
Zou, Dawei [1 ,2 ]
Wang, Xiaolei [1 ,2 ]
Wang, Tao [1 ,2 ]
Shi, Yimin [1 ,2 ]
机构
[1] Capital Med Univ, Sch Tradit Chinese Med, Beijing, Peoples R China
[2] Beijing Key Lab TCM Collateral Dis Theory Res, Beijing, Peoples R China
基金
北京市自然科学基金;
关键词
DIABETIC-NEPHROPATHY; OXIDATIVE STRESS; FERULIC ACID; RAT MODEL; PATHWAY; RAPAMYCIN;
D O I
10.1155/2022/1610416
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus (DM) and the most common cause of death in diabetic patients. DN progression is associated with podocyte damage due to reduced autophagy caused by mTORC1 activation. Tangshenning (TSN) has been shown to reduce proteinuria, protect renal function, and reduce podocyte damage. Still, the effect of TSN on the autophagic activity of podocytes remains unclear. Herein, in vitro experiments using a high glucose-induced podocyte injury model were performed. Results showed that TSN treatment enhanced the weakened nephrin expression and autophagic activity of podocytes and inhibited the mTORC1 pathway (p-mTOR, mTOR, p-p70S6K, p70S6K, ULK1, and 4EBP1) under high glucose conditions. Furthermore, the mTORC1 activator (siRNA-TSC2) partially inhibited the above beneficial effects of TSN, suggesting that mTORC1 was the target of TSN to regulate autophagy. In summary, TSN reduces podocyte damage induced by high glucose via inhibiting mTORC1 pathway and downstream targets and restoring podocyte autophagy.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Targeting inflammation in diabetic nephropathy: a tale of hope [J].
Antonio Moreno, Juan ;
Gomez-Guerrero, Carmen ;
Mas, Sebastian ;
Belen Sanz, Ana ;
Lorenzo, Oscar ;
Ruiz-Ortega, Marta ;
Opazo, Lucas ;
Mezzano, Sergio ;
Egido, Jesus .
EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2018, 27 (11) :917-930
[2]   Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update [J].
Bhattacharjee, Niloy ;
Barma, Sujata ;
Konwar, Nandita ;
Dewanjee, Saikat ;
Manna, Prasenjit .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2016, 791 :8-24
[3]   Catalpol Ameliorates Podocyte Injury by Stabilizing Cytoskeleton and Enhancing Autophagy in Diabetic Nephropathy [J].
Chen, Yan ;
Liu, Qingpu ;
Shan, Zengfu ;
Mi, Wangyang ;
Zhao, Yingying ;
Li, Meng ;
Wang, Baiyan ;
Zheng, Xiaoke ;
Feng, Weisheng .
FRONTIERS IN PHARMACOLOGY, 2019, 10
[4]   Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes [J].
Choi, Ran ;
Kim, Bo Hwan ;
Naowaboot, Jarinyaporn ;
Lee, Mi Young ;
Hyun, Mi Ri ;
Cho, Eun Ju ;
Lee, Eun Soo ;
Lee, Eun Young ;
Yang, Young Chul ;
Chung, Choon Hee .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2011, 43 (12) :676-683
[5]   Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy [J].
Chowdhury, Sayantani ;
Ghosh, Sumit ;
Das, Abhishek Kumar ;
Sil, Parames C. .
FRONTIERS IN PHARMACOLOGY, 2019, 10
[6]  
Duan SY, 2017, INT J CLIN EXP PATHO, V10, P6279
[7]   Renoprotective effect of calycosin in high fat diet-fed/STZ injected rats: Effect on IL-33/ST2 signaling, oxidative stress and fibrosis suppression [J].
Elsherbiny, Nehal M. ;
Said, Eman ;
Atef, Hoda ;
Zaitone, Sawsan A. .
CHEMICO-BIOLOGICAL INTERACTIONS, 2020, 315
[8]   Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation [J].
Fan, Wensi ;
Han, Dong ;
Sun, Zhongchan ;
Ma, Sai ;
Gao, Lei ;
Chen, Jiangwei ;
Li, Xiang ;
Li, Xiujuan ;
Fan, Miaomiao ;
Li, Congye ;
Hu, Dahai ;
Wang, Yabin ;
Cao, Feng .
FREE RADICAL BIOLOGY AND MEDICINE, 2017, 108 :725-740
[9]   Silencing of KPNA2 inhibits high glucose-induced podocyte injury via inactivation of mTORC1/p70S6K signaling pathway [J].
Fan, Xiaobao ;
Li, Zhenjiang ;
Wang, Xiaoming ;
Wang, Jing ;
Hao, Zhiming .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 521 (04) :1017-1023
[10]   Autophagy Attenuates Diabetic Glomerular Damage through Protection of Hyperglycemia-Induced Podocyte Injury [J].
Fang, Li ;
Zhou, Yang ;
Cao, Hongdi ;
Wen, Ping ;
Jiang, Lei ;
He, Weichun ;
Dai, Chunsun ;
Yang, Junwei .
PLOS ONE, 2013, 8 (04)