THE SPECTRUM OF THE GROWTH RATE OF THE TUNNEL NUMBER IS INFINITE

被引:3
作者
Baker, Kenneth L. [1 ]
Kobayashi, Tsuyoshi [2 ]
Rieck, Yo'av [3 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33146 USA
[2] Nara Womens Univ, Dept Math, Kitauoya Nishimachi, Nara 6308506, Japan
[3] Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USA
关键词
3-manifold; knots; Heegaard splittings; tunnel number; MORIMOTOS CONJECTURE; KNOTS; SURGERY;
D O I
10.1090/proc/12957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any epsilon > 0 we construct a hyperbolic knot K subset of S-3 for which 1 - epsilon < gr(t)(K) < 1. This shows that the spectrum of the growth rate of the tunnel number is infinite.
引用
收藏
页码:3609 / 3618
页数:10
相关论文
共 18 条
  • [1] Baker K. L., 2015, TWIST FAMILIES L SPA
  • [2] Surgery descriptions and volumes of Berge knots I: Large volume berge knots
    Baker, Kenneth L.
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (09) : 1077 - 1097
  • [3] Baker Kenneth L., CLOSED ESSENTIAL SUR
  • [4] Baker Kenneth L., BRIDGE NUMBER INTEGR
  • [5] Baker Kenneth Lee, 2004, THESIS U TEXAS AUSTI
  • [6] Berge J., SOME KNOTS SUR UNPUB
  • [7] DEHN SURGERY ON KNOTS
    CULLER, M
    GORDON, CM
    LUECKE, J
    SHALEN, PB
    [J]. ANNALS OF MATHEMATICS, 1987, 125 (02) : 237 - 300
  • [8] Kobayashi T, 2006, J REINE ANGEW MATH, V592, P63
  • [9] Destabilizing Heegaard splittings of knot exteriors
    Kobayashi, Tsuyoshi
    Saito, Toshio
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) : 202 - 212
  • [10] Knot exteriors with additive Heegaard genus and Morimoto's Conjecture
    Kobayashi, Tsuyoshi
    Rieck, Yo'av
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (02): : 953 - 969