Insights and Challenges for Applying Bipolar Membranes in Advanced Electrochemical Energy Systems

被引:140
作者
Blommaert, Marijn A. [1 ]
Aili, David [2 ]
Tufa, Ramato Ashu [2 ]
Li, Qingfeng [2 ]
Smith, Wilson A. [1 ]
Vermaas, David A. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, NL-2629 HZ Delft, Netherlands
[2] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
关键词
ANION-EXCHANGE MEMBRANES; WATER DISSOCIATION; FLOW BATTERY; REVERSE ELECTRODIALYSIS; TRANSPORT MECHANISMS; ALKALINE STABILITY; HIGH-PERFORMANCE; ION LEAKAGE; CELL; ELECTROLYSIS;
D O I
10.1021/acsenergylett.1c00618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bipolar membranes (BPMs) are gaining interest in energy conversion technologies. These membranes are composed of cation- and anion-exchange layers, with an interfacial layer in between. This gives the freedom to operate in different conditions (pH, concentration, composition) at both sides. Such membranes are used in two operational modes, forward and reverse bias. BPMs have been implemented in various electrochemical applications, like water and CO2 electrolyzers, fuel cells, and flow batteries, while BPMs are historically designed for acid/base production. Therefore, current commercial BPMs are not optimized, as the conditions change per application. Although the ideal BPM has highly conductive layers, high water dissociation kinetics, long lifetime, and low ion crossover, each application has its own priorities to be competitive in its field. We describe the challenges and requirements for future BPMs, and identify existing developments that can be leveraged to develop BPMs toward the scale of practical applications.
引用
收藏
页码:2539 / 2548
页数:10
相关论文
共 68 条
[1]   Reduced Ion Crossover in Bipolar Membrane Electrolysis via Increased Current Density, Molecular Size, and Valence [J].
Blommaert, Marijn A. ;
Verdonk, Joost A. H. ;
Blommaert, Hester C. B. ;
Smith, Wilson A. ;
Vermaas, David A. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5804-5812
[2]   Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes [J].
Blommaert, Marijn A. ;
Vermaas, David A. ;
Izelaar, Boaz ;
Veen, Ben In't ;
Smith, Wilson A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) :19060-19069
[3]   Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes [J].
Bui, Justin C. ;
Digdaya, Ibadillah ;
Xiang, Chengxiang ;
Bell, Alexis T. ;
Weber, Adam Z. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) :52509-52526
[4]   Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices [J].
Cha, Min Suc ;
Park, Ji Eun ;
Kim, Sungjun ;
Han, Seung-Hui ;
Shin, Sang-Hun ;
Yang, Seok Hwan ;
Kim, Tae-Ho ;
Yu, Duk Man ;
So, Soonyong ;
Hong, Young Taik ;
Yoon, Sang Jun ;
Oh, Seong-Geun ;
Kang, Sun Young ;
Kim, Ok-Hee ;
Park, Hyun S. ;
Bae, Byungchan ;
Sung, Yung-Eun ;
Cho, Yong-Hun ;
Lee, Jang Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3633-3645
[5]   Transparent Bipolar Membrane for Water Splitting Applications [J].
Chabi, Sakineh ;
Wright, Andrew G. ;
Holdcroft, Steven ;
Freund, Michael S. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (32) :26749-26755
[6]   High-Performance Bipolar Membrane Development for Improved Water Dissociation [J].
Chen, Yingying ;
Wrubel, Jacob A. ;
Klein, W. Ellis ;
Kabir, Sadia ;
Smith, Wilson A. ;
Neyerlin, K. C. ;
Deutsch, Todd G. .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (11) :4559-4569
[7]   A Robust, Scalable Platform for the Electrochemical Conversion of CO2 to Formate: Identifying Pathways to Higher Energy Efficiencies [J].
Chen, Yingying ;
Vise, Ashlee ;
Klein, W. Ellis ;
Cetinbas, Firat C. ;
Myers, Deborah J. ;
Smith, Wilson A. ;
Deutsch, Todd G. ;
Neyerlin, K. C. .
ACS ENERGY LETTERS, 2020, 5 (06) :1825-1833
[8]   A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides [J].
Dang, Hai-Son ;
Jannasch, Patric .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (41) :21965-21978
[9]  
Daud S. S., 2020, IOP Conference Series: Materials Science and Engineering, V736, DOI 10.1088/1757-899X/736/3/032003
[10]   A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater [J].
Digdaya, Ibadillah A. ;
Sullivan, Ian ;
Lin, Meng ;
Han, Lihao ;
Cheng, Wen-Hui ;
Atwater, Harry A. ;
Xiang, Chengxiang .
NATURE COMMUNICATIONS, 2020, 11 (01)