Homology of graded Hecke algebras

被引:16
作者
Solleveld, Maarten [1 ]
机构
[1] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
关键词
Hecke algebras; Periodic cyclic homology; Representation theory; Hochschild homology; PERIODIC CYCLIC HOMOLOGY;
D O I
10.1016/j.jalgebra.2010.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a graded Hecke algebra with complex deformation parameters and Weyl group W. We show that the Hochschild, cyclic and periodic cyclic homologies of H are all independent of the parameters, and Compute them explicitly. We use this to prove that, if the deformation parameters are real, the collection of irreducible tempered H-modules with real central character forms a Q-basis of the representation ring of W. Our method involves a new interpretation of the periodic cyclic homology of finite type algebras, in terms of the cohomology of a sheaf over the underlying complex affine variety. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1622 / 1648
页数:27
相关论文
共 50 条