Multiple solutions for a p-Laplacian elliptic problem

被引:0
作者
Zeng, Jing [1 ]
Cai, Shuting [2 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
[2] Fujian Jiangxia Univ, Dept Math & Phys, Fuzhou 350108, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2014年
关键词
p-Laplacian; infinitely many radial solutions and non-radial solutions; group invariant; SCALAR FIELD-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; SYMMETRY;
D O I
10.1186/1687-2770-2014-124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following p-Laplacian elliptic equation on W-1,W-p(R-N): -Delta(p)u + b(vertical bar x vertical bar)vertical bar u vertical bar(p-2)u = f (vertical bar x vertical bar, u). For certain f (vertical bar x vertical bar, u), we are interested in the functional on a group invariant subspace, and we obtain the existence of infinitely many radial solutions and non-radial solutions of the equation, which extends the result of (Bartsch and Willem in J. Funct. Anal. 117:447-460, 1993) to the space W-1,W-p(R-N).
引用
收藏
页数:9
相关论文
共 17 条
[1]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[2]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[3]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[4]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[7]   Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results [J].
Damascelli, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04) :493-516
[8]   Mountain pass solutions to equations of p-Laplacian type [J].
De Nápoli, P ;
Mariani, MC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) :1205-1219
[9]   Positive solutions for the p-Laplacian: application of the fibrering method [J].
Drabek, P ;
Pohozaev, SI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :703-726
[10]  
Gidas B., 1981, Math. Anal. Appl., VofAdv, P369