共 24 条
Potentially Kr1,r2,...,rl,r,s-graphic sequences
被引:4
|作者:
Yin, Jian-Hua
[1
]
Li, Jiong-Sheng
机构:
[1] Hainan Univ, Coll Informat Sci & Technol, Dept Math Appl, Haikou 570228, Hainan, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
基金:
中国国家自然科学基金;
关键词:
graph;
degree sequence;
potentially graphic sequence;
D O I:
10.1016/j.disc.2006.07.037
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A variation of a classical Turan-type extremal problem is considered as follows: determine the smallest even integer sigma(K,(r1, r2,...,rl,r,s), n) such that every n-term graphic sequence pi = (d(1), d(2),..., d(n)) with term sum sigma(pi) = d(1) + d(2) + (. . .) + d(n) >= sigma(K-r1,K-r2..... rl,K-r,K-s, n) has a realization G containing K-r1,K-r2,K-...,K-rl,K-r,K-s as a subgraph. In this paper, we determine sigma(K-r1,K-r2,K-...,K-rl,K-r,K-s,K- n) for sufficiently large n, where s >= r >= r(l) >= (. . .) > r(1) >= 0 and r >= 3. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1167 / 1177
页数:11
相关论文