Potentially Kr1,r2,...,rl,r,s-graphic sequences

被引:4
|
作者
Yin, Jian-Hua [1 ]
Li, Jiong-Sheng
机构
[1] Hainan Univ, Coll Informat Sci & Technol, Dept Math Appl, Haikou 570228, Hainan, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; degree sequence; potentially graphic sequence;
D O I
10.1016/j.disc.2006.07.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A variation of a classical Turan-type extremal problem is considered as follows: determine the smallest even integer sigma(K,(r1, r2,...,rl,r,s), n) such that every n-term graphic sequence pi = (d(1), d(2),..., d(n)) with term sum sigma(pi) = d(1) + d(2) + (. . .) + d(n) >= sigma(K-r1,K-r2..... rl,K-r,K-s, n) has a realization G containing K-r1,K-r2,K-...,K-rl,K-r,K-s as a subgraph. In this paper, we determine sigma(K-r1,K-r2,K-...,K-rl,K-r,K-s,K- n) for sufficiently large n, where s >= r >= r(l) >= (. . .) > r(1) >= 0 and r >= 3. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1167 / 1177
页数:11
相关论文
共 24 条
  • [1] The Smallest Degree Sum that Yields Potentially Kr1,r2,...,rl,2,s-graphic Sequences
    Yin, Jian-Hua
    Yin, Meng-Xiao
    UTILITAS MATHEMATICA, 2009, 78 : 165 - 173
  • [2] On potentially Kr1,r2,....rm-graphic sequencesi
    Yin, Jian-Hua
    Chen, Gang
    UTILITAS MATHEMATICA, 2007, 72 : 149 - 161
  • [3] An extremal problem on potentially Kr,s-graphic sequences
    Yin, JH
    Li, JS
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 295 - 305
  • [4] On the characterization of potentially K1,1,s-graphic sequences
    Yin, Meng-Xiao
    Yin, Jian-Hua
    Zhong, Cheng
    Yang, Feng
    UTILITAS MATHEMATICA, 2011, 85 : 129 - 141
  • [5] A note on the characterization of potentially K1,1,s-graphic sequences
    Yin, Meng-Xiao
    Zhong, Cheng
    Yang, Feng
    ARS COMBINATORIA, 2009, 93 : 275 - 287
  • [6] The smallest degree sum that yields potentially Kr,r-graphic sequences
    Yin, JH
    Li, JS
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (06): : 694 - 705
  • [7] The smallest degree sum that yields potentially Kr,r-graphic sequences
    Jianhua Yin
    Jiongsheng Li
    Science in China Series A: Mathematics, 2002, 45 (6): : 694 - 705
  • [8] The smallest degree sum that yields potentially Kr,r-graphic sequences
    尹建华
    李炯生
    Science China Mathematics, 2002, (06) : 694 - 705
  • [9] A condition that yields potentially K14,s-graphic sequences
    Yin, Meng-Xiao
    Gao, Nan
    Zhong, Cheng
    Yang, Feng
    UTILITAS MATHEMATICA, 2018, 108 : 159 - 167
  • [10] The smallest degree sum that yields potentially K2,s-graphic sequences
    Yin, JH
    Li, JS
    Chen, GL
    ARS COMBINATORIA, 2005, 74 : 213 - 222