On Some Results for a Subclass of Meromorphic Univalent Functions with Nonzero Pole

被引:5
作者
Bhowmik, Bappaditya [1 ]
Parveen, Firdoshi [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Meromorphic functions; univalent functions; growth and distortion theorem; laurent coefficients; taylor coefficients; COEFFICIENTS; CONCAVE; CONVEX;
D O I
10.1007/s00025-019-1118-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V-p(lambda) be the collection of all functions f defined in the open unit disk D, having a simple pole at z = p where 0 < p < 1 and analytic in D\{p} with f(0) = 0 = f' (0) - 1 and satisfying the differential inequality vertical bar(z/f(z))(2) f'(z) - 1 vertical bar < lambda for z is an element of D, 0 < lambda <= 1. Each f is an element of V-p(lambda) has the following Taylor expansion: f(z) = z + Sigma(infinity)(n=2) a(n)z(n), vertical bar z vertical bar < p. In Bhowmik and Parveen (Bull Korean Math Soc 55(3):999-1006, 2018), we conjectured that vertical bar a(n)vertical bar <= 1 - (lambda p(2))(n)/p(n-1)(1 - lambda p(2)) for n >= 3, and the above inequality is sharp for the function k(p)(lambda) (z) = - pz/(z - p)(1 - lambda pz). In this article, we first prove the above conjecture for all n >= 3 where p is lying in some subintervals of (0, 1). We then prove the above conjecture for the subordination class of V-p(lambda) for p is an element of (0, 1/3]. Next, we consider the Laurent expansion of functions f is an element of V-p(lambda) valid in vertical bar z - p vertical bar < 1 - p and determine the exact region of variability of the residue of f at z = p and find the sharp bounds of the modulus of some initial Laurent coefficients for some range of values of p. The growth and distortion results for functions in V-p(lambda) are also obtained. Next, we prove that V-p(lambda) does not contain the class of concave univalent functions for lambda is an element of (0, 1] and vice-versa for lambda is an element of ((1 - p(2))/(1 + p(2)), 1]. Finally, we show that there are some sets of values of p and lambda for which <(C)over bar>\k(p)(lambda)(D) may or may not be a convex set.
引用
收藏
页数:21
相关论文
共 20 条
[11]  
Fournier R., 2007, Complex Variables and Elliptic Equations, V52, P1, DOI DOI 10.1080/17476930600780149
[12]  
Jenkins J.A., 1962, MICHIGAN MATH J, V9, P25, DOI DOI 10.1307/MMJ/1028998616
[13]  
Livingston AE., 1994, Ann. Polonici Math, V59, P275, DOI [10.4064/ap-59-3-275-291, DOI 10.4064/AP-59-3-275-291]
[14]   CONVEX AND STARLIKE MEROMORPHIC FUNCTIONS [J].
MILLER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (04) :607-613
[15]  
Obradovic M, 2018, MONATSH MATH, V185, P489, DOI 10.1007/s00605-017-1024-3
[16]   VARIATIONAL METHOD FOR CLASSES OF MEROMORPHIC FUNCTIONS [J].
PFALTZGRAFF, JA ;
PINCHUK, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1971, 24 :101-+
[17]   COEFFICIENT PROBLEMS ON THE CLASS U(lambda) [J].
Ponnusamy, Saminathan ;
Wirths, Karl-Joachim .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (01) :87-103
[18]  
RUSCHEWEYH ST., 1985, Serdica, V11, P200
[19]  
WIRTHS K.-J., 2006, Serdica Math. J., V32, P209
[20]  
ZEMYAN SM, 1984, MICH MATH J, V31, P73