Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells

被引:155
作者
Hanenberg, H
Hashino, K
Konishi, H
Hock, RA
Kato, I
Williams, DA
机构
[1] Indiana Univ, Herman B Wells Ctr Pediat Res, Riley Hosp Children, Sch Med,Sect Pediat Hematol Oncol, Indianapolis, IN 46202 USA
[2] Takara Shuzo Co Ltd, Biotechnol Res Labs, Shiga 52021, Japan
[3] Indiana Univ, Sch Med, Howard Hughes Med Inst, Indianapolis, IN 46202 USA
关键词
D O I
10.1089/hum.1997.8.18-2193
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Efficient retroviral gene transfer into hematopoietic stem and progenitor cells can be achieved by co-localizing retrovirus and target cells on specific adhesion domains of recombinant fibronectin (FN) fragments, In this paper, we further optimize this technology for human CD34(+) cells, Investigating the role of cytokine prestimulation in retrovirus-mediated gene transfer on plates coated with the recombinant FN CH-296 revealed that prestimulation of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (PB) CD34(+) cells was essential to achieve efficient gene transfer into clonogenic cells, The highest gene transfer occurred by prestimulating PB CD34(+) cells for 40 hr with a combination of stem cell factor (SCF), G-CSF, and megakaryocyte growth and development factor (MGDF) prior to retroviral infection on CH-296. Surprisingly, a prolonged simultaneous exposure of primary CD34(+) PB cells to retrovirus and cytokines in the presence of CH-296 lowered the gene transfer efficiency, Gene transfer into cytokine prestimulated CD34(+) bone marrow (BM) cells was not influenced by increasing the coating concentrations of a recombinant FN fragment, CH-296, nor was it adversely influenced by increasing the number of CD34(+) target cells, suggesting that the amount of retroviral particles present in the supernatant was not a limiting factor for transduction of CD34(+) BM cells on CH-296-coated plates, The polycation Polybrene was not required for efficient transduction of hematopoietic cells in the presence of CH-296, Furthermore, we demonstrated that repeated exposure of CH-296 to retrovirus containing supernatant, called preloading, can be employed to concentrate the amount of retroviral particles bound to CH-296. These findings establish a simple and short clinically applicable transduction protocol that targets up to 68% of BM or G-CSF-mobilized PB CD34(+) cells and is capable of genetically modifying up to 17% of CD34(+)CD38(-)/dim PB cells.
引用
收藏
页码:2193 / 2206
页数:14
相关论文
共 50 条
[31]   Retroviral transduction of a mutant erbB-2 gene into human CD34+ derived dendritic cells [J].
何群 ;
洪小南 .
中华医学杂志(英文版), 2000, (06) :83-87
[32]   Retroviral transduction of a mutant erbB-2 gene into human CD34+ derived dendritic cells [J].
He, Q ;
Hong, XN .
CHINESE MEDICAL JOURNAL, 2000, 113 (06) :563-567
[33]   Gene delivery into human CD34+ cells by electroporation [J].
Wu, M ;
Smith, S ;
Williams, SF ;
Dolan, ME .
CANCER GENE THERAPY, 1999, 6 (06) :S18-S18
[34]   TRANSFER AND EXPRESSION OF THE HUMAN MULTIPLE-DRUG RESISTANCE GENE IN HUMAN CD34+ CELLS [J].
WARD, M ;
RICHARDSON, C ;
PIOLI, P ;
SMITH, L ;
PODDA, S ;
GOFF, S ;
HESDORFFER, C ;
BANK, A .
BLOOD, 1994, 84 (05) :1408-1414
[35]   Retroviral gene transfer in reselected CD34(+)/CD38(lo) and CD34(+)/CD38(hl) human hematopoietic progenitor cells. [J].
Glimm, H ;
Keim, HP ;
Darovsky, B ;
Storb, R ;
Wolf, J ;
Mertelsmann, R ;
VonKalle, C .
BLOOD, 1997, 90 (10) :2473-2473
[36]   Hematopoietic stem cells can be CD34+ or CD34- [J].
Donnelly, DS ;
Krause, DS .
LEUKEMIA & LYMPHOMA, 2001, 40 (3-4) :221-+
[37]   Transplantation of CD34+ hematopoietic progenitor cells [J].
Berenson, RJ ;
Shpall, EJ ;
AuditoreHargreaves, K ;
Heimfeld, S ;
Jacobs, C ;
Krieger, MS .
CANCER INVESTIGATION, 1996, 14 (06) :589-596
[38]   Efficient gene transfer into human CD34+ cells by an adenovirus type 35 vector [J].
Sakurai, F ;
Mizuguchi, H ;
Hayakawa, T .
GENE THERAPY, 2003, 10 (12) :1041-1048
[39]   Efficient gene transfer into human CD34+ cells by an adenovirus type 35 vector [J].
F Sakurai ;
H Mizuguchi ;
T Hayakawa .
Gene Therapy, 2003, 10 :1041-1048
[40]   Targeting and hematopoietic suppression of human CD34+ cells by measles virus [J].
Manchester, M ;
Smith, KA ;
Eto, DS ;
Perkin, HB ;
Torbett, BE .
JOURNAL OF VIROLOGY, 2002, 76 (13) :6636-6642