Characteristics of low-temperature silicon nitride (SiNx:H) using electron cyclotron resonance plasma

被引:44
作者
Bae, S [1 ]
Farber, DG
Fonash, SJ
机构
[1] Penn State Univ, Elect Mat & Proc Res Lab, University Pk, PA 16802 USA
[2] Motorola Semicond Prod Sector, Adv Prod Res & Dev Lab, Austin, TX 78721 USA
关键词
50 degrees C silicon nitrides; uniformity; electrical characteristics; chemical bondings;
D O I
10.1016/S0038-1101(00)00086-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon nitride (SiNx:H) thin film deposited at 50 degrees C using an electron cyclotron resonance plasma-enhanced chemical deposition (ECR PECVD) system has been explored. This 50 degrees C silicon nitride deposited on a 150 mm diameter Si wafer shows an acceptable uniformity; +/-0.9% of average index of refraction and +/-6.5% of average thickness are maintained across 150 mm diameter of the Si wafer. As-deposited 50 degrees C silicon nitrides have a leakage current density value of 2-3 x 10(-9) A/cm(2) at electric fields of 2 MV/cm and a breakdown electric field (i.e.. held at a current density of 1 x 10(-6) A/cm(2)) greater than 6 MV/cm. X-ray photoelectron spectroscopy (XPS) analysis displays that chemical bonding structure of this low-temperature ECR silicon nitride is very comparable to that of 250 degrees C PECVD nitride. However, IR absorption data indicate that the low-temperature ECR nitride has more Si-H bonds and fewer N-H bonds than the high temperature PECVD nitride. These ECR films manifest resistance to buffered oxide etchant (BOE) attack with the etch rates that are slower than 50% of a 250 degrees C PECVD nitride. The lower concentration of N-H bonds may enable these low-temperature nitrides to resist BOE attack. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1355 / 1360
页数:6
相关论文
共 18 条
[1]   Pathway to depositing device-quality 50°C silicon nitride in a high-density plasma system [J].
Farber, DG ;
Bae, S ;
Okandan, M ;
Reber, DM ;
Kuzma, T ;
Fonash, SJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (06) :2254-2257
[2]  
FARBER DG, 1997, EL SOC P PAR FRANC
[3]   PLASMA CHARACTERIZATION FOR A DIVERGENT FIELD ELECTRON-CYCLOTRON RESONANCE SOURCE [J].
FORSTER, J ;
HOLBER, W .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03) :899-902
[4]  
JUANG C, 1992, J VAC SCI TECHNOL B, V10, P1222
[5]  
KAPOOR VJ, 1983, J VAC SCI TECHNOL A, V1, P603
[6]   ETCH MECHANISM IN THE LOW REFRACTIVE-INDEX SILICON-NITRIDE PLASMA-ENHANCED CHEMICAL-VAPOR-DEPOSITION PROCESS [J].
KUO, Y .
APPLIED PHYSICS LETTERS, 1993, 63 (02) :144-146
[7]  
LANFORD WA, 1978, J APPL PHYS, V49, P2474
[8]  
LAU WS, 1989, J APPL PHYS, V66, P2767
[9]   PLASMA CHARACTERIZATION OF AN ELECTRON-CYCLOTRON RESONANCE-RADIO-FREQUENCY HYBRID PLASMA REACTOR [J].
LEE, YH ;
HEIDENREICH, JE ;
FORTUNO, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03) :903-907
[10]   Water-resistant coating on low temperature amorphous silicon nitride films by a thin layer of amorphous silicon hydrogen alloy [J].
Liao, WS ;
Lee, SC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1477-1481