Cysteine and disulfide scanning reveals a regulatory α-helix in the cytoplasmic domain of the aspartate receptor

被引:79
作者
Danielson, MA [1 ]
Bass, RB [1 ]
Falke, JJ [1 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1074/jbc.272.52.32878
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transmembrane, homodimeric aspartate receptor of Escherichia coli and Salmonella typhimurium controls the chemotactic response to aspartate, an attractant, by regulating the activity of a cytoplasmic histidine kinase, The cytoplasmic domain of the receptor plays a central role in both kinase regulation and sensory adaptation, although its structure and regulatory mechanisms are unknown, The present study utilizes cysteine and disulfide scanning to probe residues Leu-250 through Gln-309, a region that contains the first of two adaptive methylation segments within the cytoplasmic domain, Following the introduction of consecutive cysteine residues by scanning mutagenesis, the measurement of sulfhydryl chemical reactivities reveals an alpha-helical pattern of exposed and buried positions spanning residues 270-309. This detected helix, termed the "first methylation helix," is strongly amphiphilic; its exposed face is highly anionic and possesses three methylation sites, while its buried face is hydrophobic, In vivo and in vitro assays of receptor function indicate that inhibitory cysteine substitutions are most prevalent on the buried face of the first methylation helix, demonstrating that this face is involved in a critical packing interaction. The buried face is further analyzed by disulfide scanning which reveals three "lock-on" disulfides that covalently trap the receptor in its kinase-activating state, Each of the lock-on disulfides crosslinks the buried faces of the two symmetric first methylation helices of the dimer, placing these helices in direct contact at the subunit interface, Comparative sequence analysis of 56 related receptors suggests that the identified helix is a conserved feature of this large receptor family, wherein it is likely to play a general role in adaptation and kinase regulation, Interestingly, the rapid rates and promiscuous nature of disulfide formation reactions within the scanned region reveal that the cytoplasmic domain of the full-length, membrane-bound receptor has a highly dynamic structure. Overall, the results demonstrate that cysteine and disulfide scanning can identify secondary structure elements and functionally important packing interfaces, even in proteins that are inaccessible to other structural methods.
引用
收藏
页码:32878 / 32888
页数:11
相关论文
共 93 条
[21]   THERMAL MOTIONS OF SURFACE ALPHA-HELICES IN THE D-GALACTOSE CHEMOSENSORY RECEPTOR - DETECTION BY DISULFIDE TRAPPING [J].
CAREAGA, CL ;
FALKE, JJ .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (04) :1219-1235
[22]   LOCK ON OFF DISULFIDES IDENTIFY THE TRANSMEMBRANE SIGNALING HELIX OF THE ASPARTATE RECEPTOR [J].
CHERVITZ, SA ;
FALKE, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (41) :24043-24053
[23]   TRANSMEMBRANE SIGNALING BY THE ASPARTATE RECEPTOR - ENGINEERED DISULFIDES REVEAL STATIC REGIONS OF THE SUBUNIT INTERFACE [J].
CHERVITZ, SA ;
LIN, CM ;
FALKE, JJ .
BIOCHEMISTRY, 1995, 34 (30) :9722-9733
[24]   Molecular mechanism of transmembrane signaling by the aspartate receptor: A model [J].
Chervitz, SA ;
Falke, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (06) :2545-2550
[25]   Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain [J].
Cochran, AG ;
Kim, PS .
SCIENCE, 1996, 271 (5252) :1113-1116
[26]   ALPHA-HELICAL COILED COILS AND BUNDLES - HOW TO DESIGN AN ALPHA-HELICAL PROTEIN [J].
COHEN, C ;
PARRY, DAD .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 7 (01) :1-15
[27]   ATTRACTANT-INDUCED AND DISULFIDE-INDUCED CONFORMATIONAL-CHANGES IN THE LIGAND-BINDING DOMAIN OF THE CHEMOTAXIS ASPARTATE RECEPTOR - A F-19 NMR-STUDY [J].
DANIELSON, MA ;
BIEMANN, HP ;
KOSHLAND, DE ;
FALKE, JJ .
BIOCHEMISTRY, 1994, 33 (20) :6100-6109
[28]  
DANIELSON MA, 1997, THESIS U COLORADO BO
[29]   GLOBAL FLEXIBILITY IN A SENSORY RECEPTOR - A SITE-DIRECTED CROSS-LINKING APPROACH [J].
FALKE, JJ ;
KOSHLAND, DE .
SCIENCE, 1987, 237 (4822) :1596-1600
[30]  
FALKE JJ, 1988, J BIOL CHEM, V263, P14850