Timing Debugging for Cyber-Physical Systems

被引:8
作者
Roy, Debayan [1 ]
Hobbs, Clara [2 ]
Anderson, James H. [2 ]
Caccamo, Marco [1 ]
Chakraborty, Samarjit [2 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Univ N Carolina, Chapel Hill, NC 27515 USA
来源
PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021) | 2021年
基金
美国国家科学基金会;
关键词
D O I
10.23919/DATE51398.2021.9474012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the following question: Given a set of control tasks that are not schedulable, i.e., their required timing properties cannot be satisfied, what should be changed? While the real-time systems literature proposes many different schedulability analysis techniques, it surprisingly provides almost no guidelines on what should be changed to make a task set schedulable, when it is not. We show that when the tasks in question are control tasks, this timing debugging question in the context of cyber-physical systems (CPS) may be answered by exploiting the dynamics of the physical systems that these control tasks are expected to influence. Towards this, we study a very simple setup, viz., when a set of periodic tasks with implicit deadlines is not schedulable, by how much should the periods be changed in order to make the task set schedulable? Among the many ways in which the periods can be modified, our proposed strategy is to change the periods in a manner such that while the task set becomes schedulable, the poles of the closed-loop system experience the minimal shift. Since the poles influence the closed loop dynamics of the system, we thereby ensure that we obtain a system with the desired timing properties whose dynamics is very similar to the dynamics of the original (non-schedulable) system. We formulate this CPS timing debugging strategy as an optimization problem and illustrate it with a concrete example.
引用
收藏
页码:1893 / 1898
页数:6
相关论文
共 50 条
  • [31] Cyber-Physical Manufacturing Systems
    Tilbury, Dawn M.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 2, 2019, 2 : 427 - 443
  • [32] Modeling Cyber-Physical Systems
    Derler, Patricia
    Lee, Edward A.
    Vincentelli, Alberto Sangiovanni
    PROCEEDINGS OF THE IEEE, 2012, 100 (01) : 13 - 28
  • [33] Cyber-physical systems in manufacturing
    Monostori, L.
    Kadar, B.
    Bauernhansl, T.
    Kondoh, S.
    Kumara, S.
    Reinhart, G.
    Sauer, O.
    Schuh, G.
    Sihn, W.
    Ueda, K.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2016, 65 (02) : 621 - 641
  • [34] A Calculus of Cyber-Physical Systems
    Lanotte, Ruggero
    Merro, Massimo
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS (LATA 2017), 2017, 10168 : 115 - 127
  • [35] Composition of cyber-physical systems
    Sztipanovits, Janos
    ECBS 2007: 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, Proceedings: RAISING EXPECTATIONS OF COMPUTER-BASES SYSTEMS, 2007, : 3 - 4
  • [36] Time in Cyber-Physical Systems
    Shrivastava, Aviral
    Derler, Patricia
    Li Baboud, Ya-Shian
    Stanton, Kevin
    Khayatian, Mohammad
    Andrade, Hugo A.
    Weiss, Marc
    Eidson, John
    Chandhoke, Sundeep
    2016 INTERNATIONAL CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS (CODES+ISSS), 2016,
  • [37] Cyber-Physical Systems in the SmartGrid
    Karnouskos, Stamatis
    2011 9TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2011,
  • [38] Cyber-Physical Systems for SmartGrid
    Dillon, Tharam S.
    Chang, Elizabeth
    Wu, Chen
    IECON 2010: 36TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2010,
  • [39] Survey on Cyber-physical Systems
    Li H.-Y.
    Wei M.-H.
    Huang J.
    Qiu B.-H.
    Zhao Y.
    Luo W.-C.
    He X.
    He X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (01): : 37 - 50
  • [40] Education for Cyber-Physical Systems
    Henkel, Jorg
    IEEE DESIGN & TEST, 2020, 37 (06) : 4 - 4