Best possible estimates of weak solutions of boundary value problems for quasi-linear elliptic equations in unbounded domains

被引:1
作者
Wisniewski, Damian [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, PL-10710 Olsztyn, Poland
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2017年 / 25卷 / 02期
关键词
Elliptic divergence quasi-linear equations; Weak solutions; Unbounded domains; Comparison principle; Barrier function;
D O I
10.1515/auom-2017-0030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the behaviour of weak solutions of boundary value problems for quasi-linear elliptic divergence second order equations in unbounded domains. We show the boundedness of weak solutions to our problem. Using barrier function and applying the comparison principle, we find the exact exponent of weak solutions decreasing rate near the infinity.
引用
收藏
页码:201 / 224
页数:24
相关论文
共 18 条
[11]  
Murthy M.K.V., 1968, ANN MATH PURA APPL 4, V80
[12]   A NON-LINEAR SINGULAR BOUNDARY-VALUE PROBLEM IN THE THEORY OF PSEUDOPLASTIC FLUIDS [J].
NACHMAN, A ;
CALLEGARI, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (02) :275-281
[13]  
Noussair E.S., 1988, FUNKC EKVACIOJ-SER I, V31, P415
[14]  
Okubo A., 2001, Diffusion and Ecological Problems: Modern Perspectives, V14
[15]  
Ouassarah A. A., 1996, B BELG MATH SOC, V3, P217
[16]   NONLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS IN UNBOUNDED-DOMAINS [J].
PAO, CV .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (08) :759-774
[17]  
Shilov G.E., 1964, GEN FUNCTIONS, VI
[18]  
Wisniewski D., 2010, ANN U PAED CRACOV ST, VIX