Best possible estimates of weak solutions of boundary value problems for quasi-linear elliptic equations in unbounded domains

被引:1
作者
Wisniewski, Damian [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, PL-10710 Olsztyn, Poland
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2017年 / 25卷 / 02期
关键词
Elliptic divergence quasi-linear equations; Weak solutions; Unbounded domains; Comparison principle; Barrier function;
D O I
10.1515/auom-2017-0030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the behaviour of weak solutions of boundary value problems for quasi-linear elliptic divergence second order equations in unbounded domains. We show the boundedness of weak solutions to our problem. Using barrier function and applying the comparison principle, we find the exact exponent of weak solutions decreasing rate near the infinity.
引用
收藏
页码:201 / 224
页数:24
相关论文
共 18 条
[1]  
Borsuk M, 2010, FRONT MATH, P1, DOI 10.1007/978-3-0346-0477-2
[2]   Boundary value problems for quasi-linear elliptic second order equations in unbounded cone-like domains [J].
Borsuk, Mikhail V. ;
Wisniewski, Damian .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06) :2051-2072
[3]   L(infinity)-solutions for some nonlinear degenerate elliptic and parabolic equations. [J].
Cirmi, GR ;
Porzio, MM .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :67-86
[4]  
Drabek P., 1997, Quasilinear Elliptic Equations with Degenerations and Singularities
[5]  
Furusho Ya, 1989, FUNKC EKVACIOJ-SER I, V32, P227
[6]   On the linearization of some singular, nonlinear elliptic problems and applications [J].
Hernández, J ;
Mancebo, FJ ;
Vega, JM .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (06) :777-813
[7]   Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains [J].
Kondratiev, V ;
Liskevich, V ;
Moroz, V .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :25-43
[8]   ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (03) :721-730
[9]   Darcy flow around a two-dimensional permeable lens [J].
Mityushev, V ;
Adler, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14) :3545-3560
[10]  
Murray JD., 1993, MATH BIOL, V2, DOI [10.1007/978-3-662-08542-4, DOI 10.1007/978-3-662-08542-4]