Small Solutions of the Perturbed Nonlinear Partial Discrete Dirichlet Boundary Value Problems with (p,q)-Laplacian Operator

被引:6
作者
Xiong, Feng [1 ,2 ]
Zhou, Zhan [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Ctr Appl Math, Guangzhou 510006, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
基金
中国国家自然科学基金;
关键词
boundary value problem; partial difference equation; infinitely many small solutions; (p; q)-Laplacian; critical point theory; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; SUBHARMONIC SOLUTIONS; DIFFERENCE-EQUATIONS; HOMOCLINIC SOLUTIONS; PHI-LAPLACIAN; EXISTENCE; ORBITS;
D O I
10.3390/sym13071207
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider a perturbed partial discrete Dirichlet problem with the (p,q)-Laplacian operator. Using critical point theory, we study the existence of infinitely many small solutions of boundary value problems. Without imposing the symmetry at the origin on the nonlinear term f, we obtain the sufficient conditions for the existence of infinitely many small solutions. As far as we know, this is the study of perturbed partial discrete boundary value problems. Finally, the results are exemplified by an example.
引用
收藏
页数:14
相关论文
共 28 条
[1]  
Agarwal R., 1992, DIFFERENCE EQUATIONS
[2]   Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular φ [J].
Bereanu, Cristian ;
Mawhin, Jean .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (10-11) :1099-1118
[3]   Superlinear discrete problems [J].
Bonanno, Gabriele ;
Jebelean, Petru ;
Serban, Calin .
APPLIED MATHEMATICS LETTERS, 2016, 52 :162-168
[4]  
Bonanno G, 2014, ADV NONLINEAR STUD, V14, P915
[5]   Infinitely many solutions for a class of discrete non-linear boundary value problems [J].
Bonanno, Gabriele ;
Candito, Pasquale .
APPLICABLE ANALYSIS, 2009, 88 (04) :605-616
[6]   Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian [J].
D'Agui, Giuseppina ;
Mawhin, Jean ;
Sciammetta, Angela .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) :383-397
[7]   Multiple Solutions for Partial Discrete Dirichlet Problems Involving the p-Laplacian [J].
Du, Sijia ;
Zhou, Zhan .
MATHEMATICS, 2020, 8 (11) :1-20
[8]  
Elaydi S., 2005, INTRO DIFFERENCE EQU
[9]  
Guo ZM, 2003, SCI CHINA SER A, V46, P506
[10]   Multiple solutions for partial discrete Dirichlet problems depending on a real parameter [J].
Heidarkhani, Shapour ;
Imbesi, Maurizio .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (02) :96-110