An enhanced Nonenzymatic Electrochemical Glucose Sensor Based on Copper-Palladium Nanoparticles Modified Glassy Carbon Electrodes

被引:37
作者
Li, Zhan-Hong [1 ,2 ]
Zhao, Xue-Ling [1 ,2 ]
Jiang, Xin-Cheng [1 ]
Wu, Yi-Hua [1 ,2 ]
Chen, Cheng [1 ,2 ]
Zhu, Zhi-Gang [1 ,2 ]
Marty, Jean-Louis [3 ]
Chen, Qing-Song [4 ]
机构
[1] Shanghai Polytech Univ, Coll Engn, Sch Environm & Mat Engn, Shanghai 201209, Peoples R China
[2] Shanghai Innovat Inst Mat, Shanghai 200444, Peoples R China
[3] Univ Perpignan, BAE Lab, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan, France
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Glucose; nonenzymatic sensor; copper; palladium; synergistic effect; FORMIC-ACID OXIDATION; HYDROGEN-PEROXIDE; ELECTROCATALYTIC REDUCTION; ALKALINE MEDIA; ELECTROOXIDATION; BIOSENSORS; ALLOY; NANOMATERIALS; NANOSHEETS; NANOTUBES;
D O I
10.1002/elan.201800017
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Novel copper-palladium nanoparticles modified glassy carbon electrodes (Cu-Pd/GC) with enhanced nonenzymatic sensing for glucose were facilely prepared by one-step electrodeposition. The structure and composition of the prepared nanoparticles were characterized by XRD, SEM, TEM and EDS, respectively. The electrode modified process was characterized by electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometric experiments were used to evaluate the electrocatalytic activities of the electrodes toward glucose. The surface morphology and the electrocatalytic activities of Cu-Pd/GC was compared to Pd and Cu nanoparticles modified glassy carbon electrodes (Pd/GC and Cu/GC), respectively. Thanks to homogeneous distribution of Cu-Pd nanoparticles and the synergistic effect of Cu and Pd atoms, Cu-Pd/GC exhibited the highest sensitivity (298AmM(-1)cm(-2)) and the widest linear amperometric response (0.01mM to 9.6mM, R-2=0.996) toward glucose compared to Pd/GC and Cu/GC. The detection limit of Cu-Pd/GC was 0.32M (S/N=3). In addition, the as-prepared Cu-Pd/GC glucose sensor also exhibited exceptional capabilities of anti-interference, reproducibility and long-term stability. The as-prepared sensor was also evaluated for determination of glucose concentration in human blood serum samples, which exhibited high reliability and accuracy, having great potential in clinical application.
引用
收藏
页码:1803 / 1811
页数:9
相关论文
共 43 条
  • [41] Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate
    Zhu, Z. G.
    Garcia-Gancedo, L.
    Chen, C.
    Zhu, X. R.
    Xie, H. Q.
    Flewitt, A. J.
    Milne, W. I.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2013, 178 : 586 - 592
  • [42] A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene
    Zhu, Zhigang
    Garcia-Gancedo, Luis
    Flewitt, Andrew J.
    Xie, Huaqing
    Moussy, Francis
    Milne, William I.
    [J]. SENSORS, 2012, 12 (05): : 5996 - 6022
  • [43] An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode
    Zhuang, Zhenjing
    Su, Xiaodong
    Yuan, Hongyan
    Sun, Qun
    Xiao, Dan
    Choi, Martin M. F.
    [J]. ANALYST, 2008, 133 (01) : 126 - 132