Strichartz estimates for Schrodinger equations on irrational tori

被引:28
作者
Guo, Zihua [1 ]
Oh, Tadahiro [3 ,4 ,5 ]
Wang, Yuzhao [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
CAUCHY-PROBLEM; INEQUALITIES; POINTS; BOUNDS;
D O I
10.1112/plms/pdu025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove new Strichartz estimates for linear Schrodinger equations posed on -dimensional irrational tori. Then, we use these estimates to prove subcritical and critical local well-posedness results for nonlinear Schrodinger equations on irrational tori.
引用
收藏
页码:975 / 1013
页数:39
相关论文
共 44 条
[1]  
[Anonymous], 2004, METHOD TRIGONOMETRIC
[2]  
[Anonymous], 1997, The Hardy-Littlewood Method
[3]   On the multilinear restriction and Kakeya conjectures [J].
Bennett, Jonathan ;
Carbery, Anthony ;
Tao, Terence .
ACTA MATHEMATICA, 2006, 196 (02) :261-302
[4]  
Bourgain J, 2007, ANN MATH STUD, V163, P1
[5]   Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces [J].
Bourgain, J. .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 193 (01) :441-458
[6]   ON LAMBDA-L (P)-SUBSETS OF SQUARES [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :291-311
[7]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[8]  
Bourgain J., 1999, IAS PARK CITY MATH S, V5, P3
[9]  
Bourgain J., 1993, Geom. Funct. Anal, V3, P157, DOI 10.1007/BF01896021
[10]   BOUNDS ON OSCILLATORY INTEGRAL OPERATORS BASED ON MULTILINEAR ESTIMATES [J].
Bourgain, Jean ;
Guth, Larry .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (06) :1239-1295