Accumulation of Amorphous Cr(III)-Te(IV) Nanoparticles on the Surface of Shewanella oneidensis MR-1 through Reduction of Cr(VI)

被引:18
作者
Kim, Dong-Hun [1 ]
Park, Sunhwa [1 ]
Kim, Min-Gyu [2 ]
Hur, Hor-Gil [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea
[2] Pohang Accelerator Lab, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
HEXAVALENT CHROMIUM; CHROMATE REDUCTION; PROMOTED REDUCTION; TELLURITE; IRON; TECHNOLOGIES; SPECTROSCOPY; REMEDIATION; MECHANISMS; REMOVAL;
D O I
10.1021/es504587s
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Industrial effluents constitute a major source of metal pollution of aquatic bodies. Moreover, due to their environmental persistence, toxic metal pollution is of special concern. Microbial reduction is considered a promising strategy for toxic metal removal among the several methods available for metal remediation. Here, we describe the coremediation of toxic Cr(VI) and Te(IV) by the dissimilatory metal reducing bacterium-Shewanella oneidensis MR-1. In the presence of both Cr(VI) and Te(IV), S. oneidensis MR-1 reduced Cr(VI) to the less toxic Cr(III) form, but not Te(IV) to Te(0). The reduced Cr(III) ions complexed rapidly with Te(IV) ions and were precipitated from the cell cultures. Electron microscopic analyses revealed that the CrTe complexed nanoparticles localized on the bacterial outer membranes. K-edge X-ray absorption spectrometric analyses demonstrated that Cr(III) produced by S. oneidensis MR-1was rapidly complexed with Te(IV) ions, followed by formation of amorphous Cr(III)Te(IV) nanoparticles on the cell surface. Our results could be applied for the simultaneous sequestration and detoxification of both Cr(VI) and Te(IV) as well as for the preparation of nanomaterials through environmental friendly processes.
引用
收藏
页码:14599 / 14606
页数:8
相关论文
共 42 条
[1]   Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances [J].
Ahemad, Munees .
FOLIA MICROBIOLOGICA, 2014, 59 (04) :321-332
[2]   Remediation of Chromium(VI) by a Methane-Oxidizing Bacterium [J].
Al Hasin, Abubakr ;
Gurman, Stephen J. ;
Murphy, Loretta M. ;
Perry, Ashlee ;
Smith, Thomas J. ;
Gardiner, Philip H. E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (01) :400-405
[3]  
Ansari MI, 2011, MICROBES AND MICROBIAL TECHNOLOGY: AGRICULTURAL AND ENVIRONMENTAL APPLICATIONS, P283, DOI 10.1007/978-1-4419-7931-5_12
[4]   A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction [J].
Barrera-Diaz, Carlos E. ;
Lugo-Lugo, Violeta ;
Bilyeu, Bryan .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 223 :1-12
[5]   BEHAVIOR OF CHROMIUM IN SOILS .3. OXIDATION [J].
BARTLETT, R ;
JAMES, B .
JOURNAL OF ENVIRONMENTAL QUALITY, 1979, 8 (01) :31-35
[6]   Production of dimethyl telluride and elemental tellurium by bacteria amended with tellurite or tellurate [J].
Basnayake, RST ;
Bius, JH ;
Akpolat, OM ;
Chasteen, TG .
APPLIED ORGANOMETALLIC CHEMISTRY, 2001, 15 (06) :499-510
[7]   Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 [J].
Belchik, Sara M. ;
Kennedy, David W. ;
Dohnalkova, Alice C. ;
Wang, Yuanmin ;
Sevinc, Papatya C. ;
Wu, Hong ;
Lin, Yuehe ;
Lu, H. Peter ;
Fredrickson, James K. ;
Shi, Liang .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (12) :4035-4041
[8]   Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals [J].
Bishop, Michael E. ;
Glasser, Paul ;
Dong, Hailiang ;
Arey, Bruce ;
Kovarik, Libor .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2014, 133 :186-203
[9]   Tellurite: history, oxidative stress, and molecular mechanisms of resistance [J].
Chasteen, Thomas Girard ;
Esteban Fuentes, Derie ;
Carlos Tantalean, Juan ;
Christian Vasquez, Claudio .
FEMS MICROBIOLOGY REVIEWS, 2009, 33 (04) :820-832
[10]   Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction [J].
Daulton, TL ;
Little, BJ ;
Lowe, K ;
Jones-Meehan, J .
JOURNAL OF MICROBIOLOGICAL METHODS, 2002, 50 (01) :39-54