On topological entropy, Lefschetz numbers and Lefschetz zeta functions

被引:1
|
作者
Llibre, Jaume [1 ]
Sirvent, Victor F. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalunya, Spain
[2] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
基金
欧盟地平线“2020”;
关键词
Entropy; Lefschetz zeta function; Lefschetz numbers; Product of spheres; Surfaces; Torus; QUASI-UNIPOTENT MAPS; PERIODIC POINTS; SELF-MAPS; CONJECTURE;
D O I
10.1016/j.topol.2019.106906
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article we give sufficient conditions for C-infinity self-maps on some connected compact manifolds in order to have positive entropy. The conditions are given in terms of the Lefschetz numbers of the iterates of the map and/or its Lefschetz zeta function. We consider the cases where the manifold is a compact orientable and non-orientable surface, the n-dimensional torus, the product of n spheres of dimension E and the product of spheres of different dimensions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条