Categorizing metadata to help mobilize computable biomedical knowledge

被引:10
作者
Alper, Brian S. [1 ]
Flynn, Allen [2 ]
Bray, Bruce E. [3 ]
Conte, Marisa L. [4 ]
Eldredge, Christina [5 ]
Gold, Sigfried [6 ]
Greenes, Robert A. [7 ,8 ]
Haug, Peter [9 ]
Jacoby, Kim [10 ]
Koru, Gunes [11 ]
McClay, James [12 ]
Sainvil, Marc L. [13 ]
Sottara, Davide [13 ]
Tuttle, Mark [14 ]
Visweswaran, Shyam [15 ]
Yurk, Robin Ann [16 ]
机构
[1] Computable Publishing LLC, Ipswich, MA 01938 USA
[2] Univ Michigan, Sch Med, Ann Arbor, MI USA
[3] Univ Utah, Sch Med, Biomed Informat & Cardiovasc Med, Salt Lake City, UT USA
[4] Univ Michigan, Taubman Hlth Sci Lib, Ann Arbor, MI 48109 USA
[5] Univ S Florida, Sch Informat, Tampa, FL 33620 USA
[6] Univ Maryland, Coll Informat Studies, College Pk, MD 20742 USA
[7] Arizona State Univ, Scottsdale, AZ USA
[8] Mayo Clin, Scottsdale, AZ USA
[9] Univ Utah, Intermt Healthcare, Salt Lake City, UT USA
[10] Komodo Hlth, San Francisco, CA USA
[11] Univ Maryland, Dept Informat Syst, Baltimore, MD 21201 USA
[12] Univ Nebraska Med Ctr, Emergency Med, Omaha, NE USA
[13] Mayo Clin, Scottsdale, AZ USA
[14] Apelon, Hartford, CT USA
[15] Univ Pittsburgh, Dept Biomed Informat, Pittsburgh, PA USA
[16] MDyurk, West Bloomfield, MI USA
关键词
computable biomedical knowledge; digital objects; FAIR principles; metadata; trust; HEALTH; GRADE;
D O I
10.1002/lrh2.10271
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Introduction Computable biomedical knowledge artifacts (CBKs) are digital objects conveying biomedical knowledge in machine-interpretable structures. As more CBKs are produced and their complexity increases, the value obtained from sharing CBKs grows. Mobilizing CBKs and sharing them widely can only be achieved if the CBKs are findable, accessible, interoperable, reusable, and trustable (FAIR+T). To help mobilize CBKs, we describe our efforts to outline metadata categories to make CBKs FAIR+T. Methods We examined the literature regarding metadata with the potential to make digital artifacts FAIR+T. We also examined metadata available online today for actual CBKs of 12 different types. With iterative refinement, we came to a consensus on key categories of metadata that, when taken together, can make CBKs FAIR+T. We use subject-predicate-object triples to more clearly differentiate metadata categories. Results We defined 13 categories of CBK metadata most relevant to making CBKs FAIR+T. Eleven of these categories (type, domain, purpose, identification, location, CBK-to-CBK relationships, technical, authorization and rights management, provenance, evidential basis, and evidence from use metadata) are evident today where CBKs are stored online. Two additional categories (preservation and integrity metadata) were not evident in our examples. We provide a research agenda to guide further study and development of these and other metadata categories. Conclusion A wide variety of metadata elements in various categories is needed to make CBKs FAIR+T. More work is needed to develop a common framework for CBK metadata that can make CBKs FAIR+T for all stakeholders.
引用
收藏
页数:15
相关论文
共 73 条
[41]   PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability [J].
Kirby, Jacqueline C. ;
Speltz, Peter ;
Rasmussen, Luke V. ;
Basford, Melissa ;
Gottesman, Omri ;
Peissig, Peggy L. ;
Pacheco, Jennifer A. ;
Tromp, Gerard ;
Pathak, Jyotishman ;
Carrell, David S. ;
Ellis, Stephen B. ;
Lingren, Todd ;
Thompson, Will K. ;
Savova, Guergana ;
Haines, Jonathan ;
Roden, Dan M. ;
Harris, Paul A. ;
Denny, Joshua C. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (06) :1046-1052
[42]  
Kunze John, 2007, DUBLIN CORE METADATA
[43]  
Lamprecht A.L., 2020, DATA SCI, V3, P37
[44]   Desiderata for sharable computable biomedical knowledge for learning health systems [J].
Lehmann, Harold P. ;
Downs, Stephen M. .
LEARNING HEALTH SYSTEMS, 2018, 2 (04)
[45]   To Share is Human! Advancing Evidence into Practice through a National Repository of Interoperable Clinical Decision Support [J].
Lomotan, Edwin A. ;
Meadows, Ginny ;
Michaels, Maria ;
Michel, Jeremy J. ;
Miller, Kristen .
APPLIED CLINICAL INFORMATICS, 2020, 11 (01) :112-121
[46]   Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture [J].
Mandl, Kenneth D. ;
Kohane, Isaac S. ;
McFadden, Douglas ;
Weber, Griffin M. ;
Natter, Marc ;
Mandel, Joshua ;
Schneeweiss, Sebastian ;
Weiler, Sarah ;
Klann, Jeffrey G. ;
Bickel, Jonathan ;
Adams, William G. ;
Ge, Yaorong ;
Zhou, Xiaobo ;
Perkins, James ;
Marsolo, Keith ;
Bernstam, Elmer ;
Showalter, John ;
Quarshie, Alexander ;
Ofili, Elizabeth ;
Hripcsak, George ;
Murphy, Shawn N. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (04) :615-620
[47]  
Matheny M., 2019, NATL ACAD MED PREPUB
[48]  
McClure R., 2018, AMIA ANN S P, V480
[49]  
Middleton B, 2018, RECOMMENDATIONS BUIL
[50]   Identifying impact of software dependencies on replicability of biomedical workflows [J].
Miksa, Tomasz ;
Rauber, Andreas ;
Mina, Eleni .
JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 :232-254